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Time Series

Fall 2010

For my Time Series student project, I examined monthly champagne sales from January 1964 to September 1972.  The data was downloaded from http://robjhyndman.com/TSDL/.   I used the years 1964-1969 to fit a model and then compared my projected results to the 1970-1972 data.

The first six years of data are in the “1964-1969 Data” sheet of the Excel file.  The graph of this series looks like this:
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The graph clearly indicates a seasonal spike in champagne sales in December of each year.   It makes sense that sales would start to increase in the fall as the holidays approach and the biggest sales are right before New Year’s Eve.  After the holidays we see a drop In January and February when presumably people have had their fill of champagne for a while.  Sales pick up again slightly in the spring and early summer, probably due to the common occurrence of weddings during these months.  So the graph of the data follows a pattern that one would expect.
The seasonal trend of the data series is also evident in the graph of the autocorrelation (see the “Correlgram1” sheet in the Excel file).  The correlogram is shown below:
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Because of the obvious seasonality, I transformed the data from Yt to Yt – Yt-12.  This new series is listed on the “Seasonally Adjusted Data” sheet.  The new graph looks like this:
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The first thing I noticed is the upward spike for January 1967 and the downward spike for January 1968.  These spikes illustrate an unusual increase in sales during January 1967 that was not typical for that time of year.  It appears that special events occurred during that month which were cause for celebration. 

Now that the seasonal trend was removed, I next looked at the sample autocorrelation of the adjusted series (see the “Correlogram2” sheet in the Excel file):

[image: image4.emf]-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 7 13 19 25 31 37 43

ACF

Lag

Sample Autocorrelation of Seasonally Adjusted Series


At high lags the autocorrelation drops close to 0, which indicates a stationary ARIMA process.  The standard deviation of the sample autocorrelations for a white noise process is 1/√T = 1/√48 = 0.144 in this case.   A 95% confidence interval of two standard deviations is (-0.288, 0.288).  All of the sample autocorrelations are within this interval so we do not reject the null hypothesis that the sample autocorrelations are a white noise process.  
To begin fitting a model for the seasonally adjusted series, I used linear regression in Excel.  Since we want to start with the simplest model, I ran linear regression using Yt as the dependent variable and Yt-1 as the independent variable (note that Yt here is Yt – Yt-12 of the original data).  The input data is found in the “LinReg Data” sheet.  Excel produced the following results (saved in the “AR1” sheet):

Yt = -0.0841Yt-1 + 528.41
The Box-Pierce Q statistic for this model is 11.566, which does not exceed the chi-square critical value of 22.307 (using K=15 and lags 6-20), so I do not need to reject the model on this basis.  The Durbin-Watson statistic for the residuals is equal to 2.040.  A Durbin-Watson statistic falls between 0 and 4.  A value significantly less than 2 in this interval indicates positive correlation among the residuals and a value significantly greater than 2 indicates negative correlation.  A value equal to 2 indicates no correlation.  Since this Durbin-Watson statistic is fairly close to 2, the model does not need to be rejected on this basis either.

I then ran linear regression for the order 2 and order 3 autoregressive models (saved in the “AR2” and “AR3” sheets):

AR(2) process

Yt = -0.1224Yt-1 – 0.0838Yt-2 + 600.59

Box-Pierce Q = 11.186 (compared to a chi-square critical value of 21.064)

Durbin-Watson statistic = 1.997

AR(3) process
Yt = -0.1262Yt-1 – 0.0795Yt-2 + 0.1206Yt-3 + 557.83 
Box-Pierce Q = 9.146 (compared to a chi-square critical value of 19.812)

Durbin-Watson statistic = 1.944
I would not reject any models on the basis of the Box-Pierce Q statistic.  We want to use the simplest models when possible, but the Durbin-Watson statistic is closest to 2 for the AR(2) model so I chose to use the AR(2) model instead of the AR(1) model for my projections.  

The graph of predicted sales versus actual sales for the next year, 1969, is shown below:
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The model appears to be a fairly good predictor of sales in the coming year until the month of December. 

Looking at the rest of the available data, the graph of predicted sales versus actual sales for January 1969 to September 1972 is shown below:
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I can see that my AR(2) model follows the pattern of increases and decreases in sales during the year, so the seasonality is captured well.  However, after 1969 the gap between predicted and actual sales widens, especially in the non-peak season.  Predicted values more than one year out are not as accurate as the first year due to the simplicity of the regressive model I used.
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