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Introduction:

I’ve always been fascinated with cement mixer trucks and decided to base my time series project on the cost of cement over time.  This project studies the average annual prices from 1950 to 2009, and then models the data using ARIMA techniques to see which model best fits cement’s actual price fluctuations.  

Data used for this modeling was taken from U.S. Geological Survey website at http://minerals.usgs.gov/minerals/index.html.   The prices are in USD and are adjusted at the 1998 CPI levels in order to compare at constant levels.
Figure 1 is a graph of the actual average cement prices during the observed period. Cement prices show a pretty steady trend over this period.
Figure 1
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Stationarity:


To test for stationarity, we will graph the autocorrelation function.  Sample autocorrelation is the ratio of the sample covariance to the sample variance.  As can be seen from Figure 2, the sample autocorrelation declines geometrically and then approaches zero as lag k increases.
Figure 2
[image: image2.emf]Sample Auto-correlation Function
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The autocorrelation graph does not have any sharp increases and decreases. This indicates that there are no moving averages required in the model. Thus, a model with autoregressive terms only is adequate.
Model Estimation:

Cement prices can therefore be described as an autoregressive model (AR(p)). We will explore the AR model with different orders (p= 1, 2, 3).  These are the same as ARIMA(p,1,0) models.

Yt = δ + [image: image4.png]


  + εt
Using Excel’s regression add-in, the 3 auto-regressive models produced the following results

AR(1): 

Yt = 1.7618 + 0.9767Yt-1 + εt
AR(2):

Yt = 4.0569 + 1.6851Yt-1 – 0.7322Yt-2 +εt


AR(3):

Yt = 3.2082+ 1.8225Yt-1 – 1.0502Yt-2 + 0.1903Yt-3 + εt  
Figure 3 summarizes the results from the auto-regressions.  We can see from the different order models that all of the sums of coefficients are less than 1.0, which indicates that the models are stationary.  This is consistent with our test above.   From observing the R-Square and Adjusted R-Square statistics, it would appear that the auto-regressive models of the second and third orders would be the best.

Figure 3
	 
	Sum of Coefficients
	R-Squared
	Adjusted R-Squared

	AR(1)
	0.9767
	0.9426
	0.9416

	AR(2)
	0.9528
	0.9728
	0.9718

	AR(3)
	0.9626
	0.9739
	0.9724


Let’s examine additional tests to help us make the right model selection.

Serial Correlation:

The Durbin-Watson statistic has been calculated to determine whether error terms show any correlation.  A model with a Durbin-Watson statistic of 2.0 indicates that there is no serial correlation among the residuals.  We reject the AR(1) model as its Durbin-Watson statistic isn’t near 2.0 which indicates serial correlation. However, the AR(2) and AR(3) models do have a Durbin-Watson statistic near 2.0 which is a desired result. 
Figure 4
	 
	Durbin-Watson Statistic

	AR(1)
	0.5851

	AR(2)
	1.7141

	AR(3)
	1.7987


White Noise Testing:
We desire models with white noise error terms. The Box-Pierce Q statistic tests the null hypothesis that the residuals of the model are a white noise process. The Box-Pierce Q statistics approximately follows a Chi-Squared distribution.  A Box-Pierce Q that is greater than the Chi-Squared critical value implies that residuals do not form a white noise process.  The Box-Pierce Q statistics in Figure 5 are at lag 50. In the AR(1) model, the Box-Pierce Q statistic is greater than the Chi-Squared critical value and therefore the null hypothesis that the residuals do not form a white noise process cannot be rejected.  Thus, once again we can see that the AR(1) model is not an ideal model to use.  However, the AR(2) and AR(3) models are well below the 10% significance level and are acceptable.

Figure 5
	 
	Box - Pierce Q Statistic
	Chi-Squared 10%

	AR(1)
	106.1082
	62.0375

	AR(2)
	24.2899
	60.9066

	AR(3)
	24.7698
	59.7743


Model Selection and Forecasting:
Although we have rejected the AR(1) model, we still need to choose between the AR(2) and AR(3) models as they both have similar R-Square and Adjusted R-Square statistics as well as similar Durbin-Watson statistics. They also both pass the Box-Pierce Q statistic test.
We can select a model based on a correlogram of the Partial Autocorrelation Function (PACF) of our time series. Let’s examine Figure 6.
Figure 6
[image: image5.emf]Partial Autocorrelation (PACF)
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The significant sample PACF at lags 1 and 2 strongly suggests an AR(2) model for our time series.
Furthermore, since both models are similar, we would prefer the AR(2) model due to the principle of parsimony since it has one less parameter than the AR(3) model.
Due all the above, we choose the AR(2) model.
Yt = 4.0569 + 1.6851Yt-1 – 0.7322Yt-2 +εt
Let’s now take a look at how well the cement prices can be modeled using the AR(2) model.

As can been seen from Figure 7, the AR(2) model seems to do a very good job in forecasting future cement prices.
Figure 7
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Conclusion:
As can been seen from Figure 7, after analyzing the test statistics from the 3 different models, and after examining the PACF correlogram and following the principle of parsimony, the AR (2) model was selected. Since cement prices are relatively stable through time, the simple auto-regressive model without moving averages or seasonality can be used with success. Finally, the model seems to do a very good job in forecasting future cement prices.
