Time Series
Student Project
Unemployment Rates: 16-19 yr Male

xxxx xxxxxxxxx
Fall 2010

Introduction 
This projects uses time series analysis to examine unemployment rates for males ages 16-19 from January 2001 to December 2006.  I will attempt to fit an ARIMA model to this data and generate forecast for 2006 to evaluate the model.  Data was obtained from NEAS unemployment rates series #11.
Analysis
I chose to use Minitab for analysis and model selection.  Figure 1, as shown below is a graph of the original time series.
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Figure 1: Plot of 16-19 yrs Male Unemployment Rates
From this plot, the time series doesn’t appear to be stationary.  Since I will be attempting to fit an ARIMA model, the data needs to be stationary.  Figure 2, as shown below, is the autocorrelation plot to help determine if taking a first difference or 12 month difference would be necessary.  
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Figure 2: ACF for Unemployment rate, 16-19 yr Male
The high spikes every 6 lags indicate that this data is seasonal.  Taking twelve-month differences should remove these spikes.

Figure 3 shows the plot of the 12-month differences time series
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Figure 3: Plot of 12 month differenced series
Figures 4 and 5 show the autocorrelation function and partial autocorrelation function of the 12 month differenced series
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Figure 4: Autocorrelation of 12 month differenced series
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Figure 5: Partial autocorrelation of 12 month differenced series
The series now looks stationary.  Since there are large spikes at the first few lags of both the ACF and the PACF, I will try to fit an ARIMA model.
Model Selection & Diagnostics
First I’ll test an ARIMA(1,0,1) model.  Below is the output from Minitab:
Final Estimates of Parameters

Type        Coef  SE Coef      T      P

AR   1    0.8835   0.0841  10.50  0.000

MA   1    0.3940   0.1637   2.41  0.019

Constant  0.0384   0.1220   0.31  0.754

Mean       0.330    1.048

Number of observations:  60

Residuals:    SS =  137.857 (backforecasts excluded)

              MS =  2.419  DF = 57

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag            12     24     36     48

Chi-Square   21.1   28.0   35.9   49.8

DF              9     21     33     45

P-Value     0.012  0.139  0.333  0.288
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Figure 6: PACF of residuals for 12 month difference
The Ljung-Box statistics shows that this model isn’t a terrible model, but the PACF of residuals in figure 6 shows a significant spike at lag 12.  This indicates that a seasonal element could be included.  
To help remedy the spike, I’m going to try a seasonal ARIMA(1,0,1) model with seasonal period 12.

Figure 7 as shown below is the PACF of the residuals for 12 month difference.  Since the spike at lag 12 has decreased, the seasonal ARIMA model seems to have solved the problem.
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Figure 7: PACF of residuals for 12 month difference for seasonal ARIMA(1,0,1)x(1,0,1)12 model

Below is the minitab output for this seasonal ARIMA model:
Final Estimates of Parameters

Type         Coef  SE Coef      T      P

AR   1     0.9246   0.0911  10.15  0.000

SAR  12   -0.3238   0.1511  -2.14  0.037

MA   1     0.3246   0.1615   2.01  0.049

SMA  12    0.7557   0.1622   4.66  0.000

Constant  0.00603  0.02736   0.22  0.827

Mean       0.0604   0.2742

Number of observations:  60

Residuals:    SS =  63.9644 (backforecasts excluded)

              MS =  1.1630  DF = 55

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag            12     24     36     48

Chi-Square    6.1   13.9   24.6   30.0

DF              7     19     31     43

P-Value     0.530  0.791  0.783  0.934

The Ljung-Box test shows all p-values to be over .05 which means the series of observations over time are random and independent.  If the observations weren’t random and independent, the rest of our results could be skewed and therefore unusable. 
Figure 8 depicts a four-in-one diagnostic plot.  The Normal Probability Plot and Histogram are used to check normality.  The histogram doesn’t the strong bell curve that signified normality.  We will run a separate diagnostic test to check for normality.  The Versus Fits shows that the residuals are linear and have equal variance since the points could be fitted with parallel horizontal bands.  The Versus Order looks random with no strong patterns, which indicated that the data is independent,
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Figure 8: Four-in-One Diagnostic Plots
I ran the Ryan-Joiner test for normality. It is similar to Shapiro Wilk. The null hypothesis is that the data is normally distributed.  The p-value obtained by Minitab is greater than .10 meaning that we must not reject the null hypothesis. Therefore, the data is normally distributed.  Figure 9 depicts the Normal Probability Plot with information about the Ryan-Joiner test statistic and p-value.
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Figure 9: Anderson Darling Normal Probability Plot
Forecasting
Now we can use the selected model to forecast values from January 2006 to December 2006.  This will help evaluate the selected model and determine if it is an appropriate model to use for forecasting.

Figure 10 shows the plot of the time series with forecasts for 2006 as well as 95% confidence limits.
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Figure 10: Time Series with forecasts and 95% confidence limits
As you can see in Figure 10, the forecast does a very good job of predicting the behavior of the time series.  The time series follows the forecasts very closely and never leaves the confines of the confidence limits.  I think this demonstrates that this is an appropriate and accurate model.

Conclusion
The unemployment rates for ages 16-19 males from the year 2001 through 2006 can be fit with a seasonal ARIMA(1,0,1) x(1,0,1)12 model.  After running through analysis and diagnostics, I have determined that this is a valid model.    As seen from the forecasts, the model is also fairly accurate.   Male teen unemployment rates could reflect summer jobs and more variable could be taken into account to create more flexible models. 
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