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Time Series Model for the Number of Ohio’s Hunting Licenses Sold
Introduction

The objective of this project is to model the annual number of hunting licenses sold in the state of Ohio.  To obtain a hunting license in Ohio, all you need to do is take a hunter’s education course and purchase a license at an approved vendor.  I have often wondered if the number of hunters each year was decreasing due to urbanization and the destruction of wildlife habitat.  The data that will be used is from Ohio’s Department of Natural Resources and it contains data from 1925 to 2005.

Here is the data source: http://www.ohiodnr.com/wildlife/dow/regulations/PDF/LicenseSales.pdf.

Graphing the Data

When graphing the number of licenses sold each year (see chart below), there appears to be two different distinct trends in the graph.  From 1925 to 1949, the number of licenses seems to be increasing, but some fluctuation.  Then from 1949 to 2000, the number is decreasing year over year.  We immediately assume that the data is not stationary, because of the evidence of these two distinct trends, 
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Sample Autocorrelation

Even though we have already assumed that the data is not stationary, we will graph the sample autocorrelations for each lag to make sure.  If the data is stationary, the autocorrelation should at some point be at/oscillate around zero and any other pattern implies that the series is not stationary.  Again, once we graphed our series autocorrelations (see graph below), it proves that the series is not stationary.  The sample autocorrelation decreases at the beginning (which would have proved that the series was stationary if it would have stopped decreasing at zero), but kept on decreasing down to -0.4 then it started increasing again to 0.2.  
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Since the series is not stationary; we will take the first difference of the series and check to see if this series is stationary.  
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We can assume by just looking at the plots of the first differences (see graph above) that this series is stationary.  We can tell this because there doesn’t appear to be any trend in the series and it oscillates around zero in the later lags.  When we graph the sample autocorrelation of the first differences (see graph below) it confirms our intuition, because the autocorrelations decline to zero in the later lags.  This shown behavior implies an AR model because the series doesn’t cut off at point like a MA model would, but tails off to zero.  To cover our basis, we will model a MA(1), AR(1), AR(2), and an ARMA(1,1).
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Parameter Estimation
AR(1)

The AR(1) models the YT values using YT  = φYT-1 + eT.  This is equation 4.3.2 in our textbook.  
Using the Least Squares Estimation Method:  From Excel’s Regression analysis tool you get the following regression results:
[image: image5.emf]Coefficients Standard Error t Stat P-value

Intercept -249.607 4,580.620 -0.054 0.957

X Variable 1 -0.113 0.117 -0.964 0.338


This implies that φ = -0.113.  
To check our φ calculation, we will also use the Method of Moments.  

φ = r1

By equation 7.1.1

This would imply that φ is -0.113 (from the graphs above), which is the exact same number from the regression output.  Also, our µ = δ / ( 1- φ), so δ = -293.
AR(2)

The AR(2) models the YT values using YT = φ1YT-1 + φ2YT-2 + eT.  This is equation 4.3.9 in our textbook.

Using the Least Squares Estimation Method:  From Excel’s Regression analysis tool you get the following regression results:

[image: image6.emf]Coefficients Standard Error t Stat P-value

Intercept -375.76 4,664.02 -0.08 0.94

X Variable 1 -0.07 0.12 -0.60 0.55

X Variable 2 -0.12 0.12 -1.01 0.31


This output suggests that φ1= -0.07 and φ2 = -0.12.

Once again to check the regression output we will use the Method of Moments and this will require us to use the Yule-Walker equations (7.1.2).


φ1 = r1(1-r2) / (1-r12)
and
φ2 = r2 – r12 / (1-r12)

This calculation gives us:



φ1 = -0.121
and
φ2 = -0.071.
The parameters (φ1 and φ2) also meet the conditions for stationary for AR(2), which are from formula 4.3.11.  Also, δ = -312.8.
MA(1)

The MA(1) models the YT values using YT = eT – θeT-1.  This is equation 4.2.2 in our textbook.  We are not able to use the regression tool in excel to estimate the parameter, so we will only use the Method of Moments.


θ = (-1 + sqrt(1-4r12)) / 2r1
By equation 7.1.4

This will give us a θ = 0.1145.

ARMA(1,1)

The ARMA(1,1) models the YT values using YT = φYT-1 + eT  – θeT-1.  This is equation 4.4.2 in our textbook. The same as the MA(1) model, we can’t use Excel’s regression tool, so we will use the Method of Moments.


φ = r2 / r1
and
r1= ((1- φ θ)(φ – θ)) / (1-2θφ+ θ2) 
By equations 7.1.5 and 7.1.6.

φ = 0.5089

θ = 0.634 using goal seek in excel.
δ = -129.09.

Model Diagnostics

Now that we have the model parameters, we need to check and see how well they fit the data.  For the AR models, the regression output also included the regression statistics.
For the AR(1):

[image: image7.emf]Regression Statistics

Multiple R 0.113

R Square 0.013

Adjusted R Square -0.001

Standard Error 39,403

Observations 74


For the AR(2):

[image: image8.emf]Regression Statistics

Multiple R 0.133

R Square 0.018

Adjusted R Square -0.010

Standard Error 39,849

Observations 73


As you can see both of these models have a very, very small R2 implying that they would not serve as good models for our data.  
The next step in determining the best model for our data is to look at the residuals that each model produces.  Ideally, the residuals will show no pattern and will not be correlated.  We have two different tests that we can use to conclude this.  First, we will look at the Durbin Watson Statistic.
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AR(1) 2.015
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Durbin Watson Statistic


For this statistic, the closer to the value 2, the less correlation there is between the residuals.  For all the models, the values are very close to two, which would imply that all of them have no or very weak correlation in the residuals.  But AR(2) has the closest value to 2, so based on this statistic the AR(2) is the best model.
Now we will look at the Box Pierce Q statistic at different lags.

[image: image10.emf]Lag MA(1) AR(1) AR(2) ARIMA(1,1)Chi Sq at 5%

30 29.27 29.82 26.27 26.94 42.56

31 31.64 32.12 28.70 29.39 43.77

32 33.63 34.13 30.49 31.15 44.99

33 33.88 34.35 30.87 31.52 46.19

34 34.11 34.61 30.96 31.71 47.40

35 34.27 34.77 31.14 31.94 48.60

36 35.52 36.05 32.22 32.87 49.80

37 35.57 36.11 32.27 32.89 51.00

38 37.06 37.63 33.54 34.38 52.19

39 37.09 37.66 33.58 34.43 53.38

40 37.16 37.75 33.63 34.45 54.57

Box Pierce Q Statistic


This is another test to see if the residuals are not correlated with each other.  For us to accept that null hypothesis that they aren’t correlated, the statistic needs to be below the Chi2 critical value.  Once again, all of the models’ statistics are below the Chi2, so for all of them we can’t reject the null hypothesis.  The AR(2) model has the smallest Box Pierce Q Statistic, so this is the best model again based on this statistic.
Conclusion
Based on our model diagnostic testing, the AR(2) model is the best to model the first differences.  It had a higher R2 compared to the AR(1) and had the strongest evidence that there was no correlation between the residuals.  
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The above chart also shows that the residuals do not show any pattern among them.  They seem to oscillate around zero, which is what we what.  We wanted the residuals to almost follow a normal distribution with a mean of zero.[image: image12.emf]-150,000
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As you can see by the chart above, that the AR(2) model is not actually a good fit for the series at all.  The model doesn’t help predict the large jumps in the data.  This is something that we expected since the R2 number was so very low.  Also, from the regression output neither φ1 nor φ2 were statistically significant since they had such large p-values.
[image: image13.emf]Coefficients Standard Error t Stat P-value

Intercept -375.76 4,664.02 -0.08 0.94

X Variable 1 -0.07 0.12 -0.60 0.55

X Variable 2 -0.12 0.12 -1.01 0.31


In reality, the number of hunting licenses depends on a number of different variables.  The price of the licenses, the growth of cities, and the general age of the population, all affect the number of licenses sold each year.  Looking at the raw data, you can see how hard it would be to model, since there were so many large fluctuations in the data.  If we would have modeled only the data from 1925 to 1949 or the series of 1950 to 2000, we might have a different picture.
