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Introduction
As I began to consider topics, I knew that I wanted to choose one that would genuinely interest me. I have such strong affinity with movies, so I narrowed my focus to cinema and to my final choice – box office ticket sales. I was curious about the number of movie tickets sold historically, especially given advances in digital effects and bigger production budgets in addition to the growing popularity of digital rentals provided by companies such as Netflix. The intent of this project will be to move through the modeling process and to identify an appropriate model for box office ticket sales.

Data

The data supporting my time series comes from the following website:

http://www.boxofficemojo.com/yearly/
The website provides a lot of movie information and statistics. I chose historical data by year from 1980 through 2010. Amidst gross revenues and other variables, I decided on ticket sales as I found this one the most appealing as a moviegoer.

Model Specification

As we begin model specification and begin to understand the data, one of the first things we look at is stationarity of the time series. A time series is considered stationary when the probability laws around the stochastic process do not vary over the course of time. With stationarity, the covariance between two data points depends on the time difference between them and does not depend on the actual times they are measured. Depicted in mathematical symbols:
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Correlation is then as follows:
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If we have a non-stationary process, we can try to take differences to arrive at a stationary process. Let’s first take a look at the time series itself below.
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The graph shows the number of movie tickets sold by year from 1980 to 2010. If we can identify a trend, then that may indicate that we are looking at a non-stationary process; if we can’t identify a trend, then that may lead us to believe that this is a stationary process. Generally speaking, ticket sales appear to have increased from the early years through 2002 and then to have decreased afterwards through 2010. We can’t definitively say that there is a trend here. We can look at the sample autocorrelations below to help us determine whether or not the time series is stationary.
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The graph above shows how the sample autocorrelation moves toward zero fairly quickly as the lag increases. This is an indication that the process is stationary. There do not appear to be any sharp movements anywhere in the line graph, which suggests that there are not moving average terms in the model. Hence, we can focus on exploring models that only contain autoregressive terms.

Model Estimation

After narrowing my focus to autoregressive models, I decided to look at AR models of order 1, 2, and 3 to evaluate how well they worked with the data.

An autoregressive model in mathematical symbols is:
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with the following attributes:

Yt = data at time t

δ = constant term

Φi = coefficient at lag i

ε t = error term

Excel’s Regression add-in was utilized to find the coefficient and intercept terms among other items and below is the resulting function for Yt with these terms for each model:
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The table below displays several values for these autoregressive models:
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The sum of the coefficients for each model is less than one, indicating that each fitted model is indeed stationary. The coefficient of determination (R2) and the adjusted R2 is pretty high for each model, which suggests a strong goodness of fit. The AR(1) has the highest R2 value out of all three models.

Diagnostics
After estimating the model, we should continue into some diagnostic trials to test the quality of the model specifications. This can be accomplished with several procedures, but we will focus on two: the Durbin-Watson Statistic (DWS) and the Box Pierce Q Statistic (BPQS).

The Durbin-Watson Statistic helps us to indicate whether or not the residuals are serially correlated. The DWS will be close to 2 if these residuals are serially uncorrelated. The statistic will be higher than 2 if positive serial correlation exists, and on the other hand, it will be lower than 2 if negative serial correlation is the case. I calculated the DWS for each autoregressive model as displayed in the table below.
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Since the AR(1) and AR(2) models have DWS values less than 2, the residuals are technically negatively serially correlated. Conversely, the AR(3) model has a DWS value higher than 2, showing that the residuals are technically positively serially correlated. However, the correlations for all three models are very slight since the statistic values are really close to 2, which therefore suggest that the residuals are serially uncorrelated.

After the success of the Durbin-Watson Statistic, we turn to the Box Pierce Q Statistic. We can look to a comparison of the Q Statistic value with the Chi Square critical value to help determine if each model is correctly specified. The table below exhibits these values for each model.
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We can see that the BPQS value is less than the Chi Square critical value for each autoregressive model. This suggests that each of these models is correctly specified based on the Box Pierce test.

Since the AR(2) and AR(3) models have the DWS values closest to 2, I decided to rule out AR(1). This decision was also guided by the fact that all three models had R2 values really close to each other. With that said, I chose the AR(2) model since its R2 value is higher than the value belonging to the AR(3) model. Hence, I believe the best model for the time series data is the following:
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Model Evaluation
After selecting a model, it’s time to evaluate how well this model can provide forecasted values. We can evaluate the model by comparing forecasted values with actual values to test the accuracy of the predictions. I projected the number of movie ticket sales for 2008, 2009, and 2010 and compared these projections with the actual number of movie ticket sales for these years as seen below.
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Conclusion
As seen in the actual vs. projection chart above, the forecast didn’t perfectly predict the values. Movie ticket sales for 2008 and 2010 were a little over-fitted and ticket sales for 2009 were a little under-fitted. Although it didn’t predict these values precisely and the shape isn’t exactly the same, the AR(2) model still predicted reasonable values that seem within an acceptable range around the actual values. I believe that the AR(2) model was the right model to choose, especially given the steps that I went through to this point. To recap, I determined that the process was stationary by evaluating the graph of the sample autocorrelations. This graph also helped me rule out exploration of moving average models since I didn’t notice any year-to-year movements that I would deem as spikes or jumps. I fit autoregressive models of order 1, 2, and 3 and evaluated them. Calculations of the Durbin-Watson Statistic and the Box Pierce Q Statistic helped provide diagnostics for each of these models to guide me in determining which model I felt would be the best fit for my time series data.
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