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Introduction

This project analyzes the winning race time for the Boston Marathon men’s open champions for the years 1919 through 2010.  The Boston Marathon was first run in 1897, but there were times in the early years of the race that should be ignored if performing a time series analysis.  In 1901 the race was tainted with scandal when a favorite in the race, Ronald McDonald (yes, Ronald McDonald), mysteriously collapsed (see http://www.boston.com/zope_homepage/sports/marathon_archive/history/1901.shtml for more detail).  Years later, in 1918, the marathon was canceled and in its place a marathon relay of sorts was run.   To eliminate these years from the data I simply started the analysis in 1919 which still left an adequate number of data points to analyze.  I will use some basic ARIMA (p, d, q) models to select the best model(s) to test the goodness of fit for projected vs. actual winning race times.
Data

The data that this project is based upon can be found at the following website:  http://www.boston.com/sports/marathon/history/mens_open_champions/
This data can be seen on the “Raw Data” tab of the “Boston Maraton.xls” workbook.  Column A contains the year in which the race was run.  Column D contains the raw winning race time for the men’s open champion in the format HH:MM:SS.  I converted these times into minutes, with the final results found in column F.  The men’s open winning times in the forms of minutes for the years 1919-2010 is the basis for the time series analysis performed for this project.
Data Analysis
To begin our data analysis we will first plot the raw winning time data points in Figure 1.
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Figure 1.  Boston Marathon men’s open winning race times
It can be seen that there looks to be a steadily decreasing trend in the data from 1931 to right around 1986.  Then from 1986 to 2010 there appears to be a leveling off, with possibly the start of a slight downward trend starting in 2006.

Next our autocorrelation function was calculated.  The graph of this is shown in Figure 2.
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Figure 2.  Sample autocorrelation function of raw data
A stationary process has an autocorrelation that rapidly drops to zero as lag k increases, then stays around zero with random fluctuations.  Figure 2 does not exhibit the characteristics of a stationary process as the autocorrelation drops to zero at around a lag of 33, then continues to decline below zero until around lag 58.  Then it once again increases and approaches zero around a lag of 85.
The autocorrelation function for the first-differenced and second-differenced data was calculated and graphed in Figure 3 and Figure 4.
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Figure 3.  Sample autocorrelation function of first-difference data
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Figure 4.  Sample autocorrelation function of second-difference data

Both sample autocorrelation functions for the first-difference and second difference data oscillate above and below zero.  But the another major difference from the autocorrelation of the original data is that the autocorrelation of the differenced data stays around zero, with random fluctuations.  We will proceed using ARIMA models to attempt to fit the data.
Model Specification

Regressions were run using 6 models.  The results are shown below:
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Modeled Equations

ARIMA(1,1,0)= -0.3481 - 0.3736Yt-1 + 
ARIMA(2,1,0)= -0.3264 - 0.4757Yt-1 - 0.2820Yt-2 + 
ARIMA(3,1,0)= -0.3269 - 0.5630Yt-1 - 0.3748Yt-2 - 0.1686Yt-3 + 
ARIMA(1,2,0)= 0.0910 - 0.5970Yt-1 + 
ARIMA(2,2,0)= 0.0548 - 0.8850Yt-1 - 0.4870Yt-2 + 
ARIMA(3,2,0)= 0.0044 - 1.1320Yt-1 - 0.8975Yt-2 - 0.4811Yt-3 + 
Upon initial inspection of the statistics we have some conflicting information that may make it difficult to select a very good model.  The ARIMA(1,1,0) has a modeled mean that is very close to the true mean, while the others have modeled means significantly different from the true means.  But when we look at the Adjusted R Squared statistic, we see that the ARIMA(1,1,0) has the smallest value, perhaps indicating the least likely fit.

We also check each of the models to determine if they could be stationary.  We determine that the ARIMA(3,1,0), ARIMA(2,2,0), and ARIMA(3,2,0) models fail the stationary test because their absolute sum of coefficients is greater than zero in each case.  Our analysis will proceed with the remaining models that have an indication of being stationary.

Next, I calculated the Durbin-Watson statistic and Box-Pierce Q statistic for the following models:
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The Durbin-Watson statistic tests for serial correlation in the residuals.  The ARIMA(1,1,0) and ARIMA(2,1,0) models have Durbin-Watson statistics that do not significantly differ from 2.0 indicating that there is no serial correlation between residuals.  However, the ARIMA(1,2,0) has a Durbin-Watson statistic of 2.57 which differs significantly from 2.0 indicating a negative serial correlation between residuals.
For the Box-Pierce Q statistic I used the first 40 lags to produce the statistic.  At the 10% significance level the ARIMA(1.2.0) model has  Box-Pierce Q statistic higher that the Chi-squared critical value we can reject that the residuals are white noise.  We cannot reject that the residuals are white noise for the ARIMA(1,1,0) and ARIMA(2,1,0) models at the 10% significance level.
Conclusion

I graphed results for both the ARIMA(1,1,0) and ARIMA(2,1,0) first difference models vs. the actual first difference data for the last 30 years in order to determine if one of the models could effectively produce a series that could be said to roughly fit the actual data.  I limited the models evaluated to the ARIMA(1,1,0) and ARIMA(2,1,0) considering all prior statistical data cited in prior sections of this paper.  The results are shown in Figure 5.
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Figure 5. First Difference Modeled vs. Actual Data
It cannot be expected that modeled data can exactly reproduce actual data, but upon inspection of the graphed data there is no conclusive evidence that either the ARIMA(1,1,0) or ARIMA(2,1,0) are good model fits for the first differenced actual data.  This is not a huge surprise as the adjusted R square statistic for the ARIMA(1,1,0) was about 13% while the ARIMA(2,1,0) was about 20%.  There still may be a model that can accurately forecast the winning times for the Boston Marathon men’s open, but the models tested within the scope of this project do not produce convincing predictive results.
