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Time Series Project- Price of Coffee

Introduction

The purpose of this project is to analyze the price of coffee collected over the last ten years. Data is found monthly up to the current date. It is my prediction that coffee prices will increase over the last ten years due to consumer expectations and general correlation of commodities to the general global marketplace for all assets (equities, etc.). If one is to believe in efficiency in market prices, then the market price of commodities should have all relevant information priced in at the time of valuation. Therefore, seasonality is not expected and is not accounted for in the model. In estimating a model fit, it is expected that many models will adequately represent the history found and that a simple model can be used.

Data 

The data was found at the price index website for commodities, http://www.indexmundi.com/commodities/?commodity=robusta-coffee&months=120. The data was not adjusted for inflation. An assumption was made that inflation has been relatively low over the last 10 years (averaging 1-2%) and would not have a large impact on the results of the time series analysis.

Initial Modeling Specifications

Graphing the price of coffee over the last ten years shows a general upward trend with certain downward trends or fluctuations in the data not dissimilar to equity movements. It also appears that the price movement is nonstationary and thus techniques should be used to make the data stationary (i.e. 0 delta term).
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The sample autocorrelation function (ACF) shows the correlation for each lagged value. It is the ratio of the sample covariance to the sample variance. The formula for autocorrelation is 
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To assume stationarity, the sample autocorrelations should decrease quickly to zero and fluctuate around a common mean. It would appear that the autocorrelations are high and nonrandom. It appears that the immediately past values have a high determinant on the next values, which is expected since price movements around a single date should be near the prior date given marketing price principles. 
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As can be seen from the graph, the autocorrelations decline as the lag increases until turning negative at around lag 40. It then increases back to around 0 at lag 117. There does not appear to be fluctuation around a common mean and no sharp increases or decreases. This hints towards an autoregressive model rather than a moving average model. To avoid over-differencing and the principle that price movements follow a logarithmic pattern, the first difference of the natural logarithms of the data is taken. [image: image8.png]V(log(¥:)) = log(¥) —log(¥,—y)
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The sample ACF of the first differences of the logarithms of data show random fluctuations around 0 with no discernable signs of seasonality as can be seen from random periods of time (such as periods between 30-35 lags) that show no spikes in the ACF. The lags seem to approach 0 at around lag 109. This suggests stationarity of the data and it will be assumed for this data set when finding the best model fit.
Model Parameterization (Parameter Estimation)

For this dataset, it was assumed the data was stationary, thus the [image: image12.png]


 term is assumed to be 0 in each of the models. ARIMA and ARMA models were not tested given the simplicity of the data set. The log first differences were estimated using method of moments and checked with regression analysis for an autoregressive of first two orders and a moving average model. 
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Regression was run by using the lagged terms to predict the Y(t) terms in the autoregressive cases and the prior residual terms in the moving average case. Consistent with our assumption of stationarity, we see that the sum of the coefficients is less than 1.0 for all the models.  Graphs of the three models and their fits are shown below. It is found that the regression coefficients for the X variables are very close to that produced by method of moments calculated above. The reason for the slight difference is that the method of moments is an approximation. Note: a non-significant intercept term is included in the regression analysis as well. 
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From the graphs, it appears that all three models are very good fits and neither one has an advantage. Further testing is needed and was thus conducted.

Model Diagnostics: Serial Correlation

The Durbin-Watson statistic is used to show if error terms are serially correlated. It is calculated as 
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A value of d significantly less than two shows positive serial correlation while greater than two shows negative correlation. Values close to two as a rule of thumb shows no autocorrelation. The values of the Durbin-Watson statistic are shown in the table below:

	Model
	DW Statistic

	AR(1)
	1.94

	AR(2)
	1.93

	MA(1)
	1.96


All three values are very similar and show no real indication which is better. While the moving average model is technically closer to 2.0, this is not a significant increase over the other alternate models. 
Model Diagnostics: White Noise Testing
The Box Pierce Q-statistic is used to test whether residuals are white noise (random fluctuations) or follow certain trends. The test has poor performance in small samples but should be sufficient for this data set. It is calculated as the weighted sum of the autocorrelations (rk). To test significance, a chi-squared distribution is used with T-p-1 degrees of freedom, where reductions are due to the number of parameters being estimated. 

	Model
	Box Pierce Q-Statistic

	AR(1)
	59.36

	AR(2)
	58.87

	MA(1)
	59.18


Again all three models show extremely similar results. Using a 10% significance level and degrees of freedom of 118 for AR(1) and MA(1) model and 117 for AR(2) model, a critical value was found. These values are roughly 138. The calculated Box Pierce values fall significantly below this value, and we clearly fail to reject the null hypothesis that the residuals are white noise. 

Model Selection and Forecasting

Based on the model diagnostics, I would select an autoregressive model to fit the data. Since the Durbin Watson and Box Pierce test did not show a clear favorite, principles of parsimony should be used. The principle states that the simpler model with fewer parameters are preferred over the more complex model, due to biasing being presented and adjusted R-squared values lowering with more parameters. Also, qualitatively, for coffee price movements (or market price movements in general), past values will continue to influence future values more so than a moving average model given the long term nature of price movements. For a moving average model, autocorrelations will drop to 0 quickly whereas autoregressive may take longer. This is consistent with the results of our lagged values tapering off to zero at high lags (past 100). The graph below is reproduced and shows how well the fit of an AR(1) model is to the logged differenced data:
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Conclusions:

As evidenced by the above analysis and the graph above, the autoregressive model of order one does a good job in predicting future coffee price.  After analyzing test statistics from the three difference models, using judgment and following the principles of parsimony, the auto-regressive model with order one was selected. Higher order models or ARIMA models were not introduced since it is better to avoid introducing more parameters when the model is already fit to the data as accurately as it is. In addition, seasonality is clearly not found in the price of coffee. 

