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Time Series Student Project

Fall 2010 Session

Time Series Analysis of NHL’s Art Ross Trophy winners

Introduction

Since the 1947-1948 NHL’s season, the Art Ross Trophy has been awarded to the player leading the league in terms in scoring points. Many great players won that trophy, which has been awarded 61 times to 25 players since its creation. The first winner was Elmer Lach, who ended the 1947-1948’s season with 61 points, while the current holder of the trophy, Henrik Sedin, who led the NHL with 112 points last year. 
During the 80’s, Wayne Gretzky won the trophy 7 times in a row, while collecting more than 200 points during 5 seasons. This being said, we see that there’s a lot of variation between the total points a player collected in order to win the Art Ross Trophy.  
It would be interesting to see if it is possible to fit an ARIMA(p,d,q) model to this time series.

Data
The data I used for my analysis was obtained on Wikipedia’s web site and is available in my Excel’s Worksheet name “Art Ross Winners”. My first observation was that I needed to clean the data a little bit. Since the 1994-1995’s and the 2004-2005’s seasons were affected by lock-outs, I did not used these years in my analysis. 
The following graph shows the data before the cleaning.
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Graph 1 : Art Ross Trophy Winner's total
points by seasons
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In the last graph, I have circled the data that were deleted because of the lock-outs (the 1994-1995’s season was interrupted, while the 2004-2005’s season was simply cancelled). Once these data were eliminated, I obtained the following results.
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The data shown in Graph 2 is available in my Excel’s Worksheet named “Used Data”.
Test of stationarity
First of all, let’s examine the data to see if we have a stationary time series. In order to correctly model the time series, we need a stationary time series. The test of stationarity will be based on autocorrelation function, which is the ratio of the sample covariance to the sample variance.
I used the autocorrelation formula seen in the textbook to estimate ρk.
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To show the different ways to graph [image: image5.png]


 against k, the Excel’s Worksheet named “Correlogram” used different formulas. The formula presented above was used for the following graph.
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Graph 4 : Sample Autocorrelation Function
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In order to suppose that after a certain amount of lag, the result becomes white noise, the autocorrelation needs to be close to 0. 
Graph 4 shows that the correlogram does not decline rapidly enough for a stationary process, since the autocorrelation becomes, and stays, close to 0 only after lag 40.
Also, there does not seem to be any seasonality, so no adjustments will be necessary for this detail.

Note:

Alternatively, we could also have used Excel’s built-in correlation formula and make adjustments for degrees of freedom. The results are very similar.
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Graph 5 : Using Excel's correlation function
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Adjustment
In order to obtain a stationary time series, we need to take the process’s first difference, which will mean our ARIMA(p,d,q) process will be an ARIMA(p,1,q) process. Our new process becomes:
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Excel’s Worksheet name “Correlogram 1st diff” uses the same step as in the previous Stationarity Analysis, but with the first difference. We obtain the following graph:
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This graph allows us to find 2 really important things. Firstly, the correlogram of first difference declines to zero by lag 3 (or very close to the standard deviation’s limit). Secondly, since the autocorrelation oscillated around 0, we know that this is probably an Autoregressive process, since the autocorrelation of an AR(1) process is [image: image12.png]
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 would produce this kind of autocorrelation function.
Therefore, since the new correlogram declines to zero rapidly and remains zero after, we have our stationary process. It is now the time to estimate our model.

Model Estimation
As stated earlier, the first-difference time series is probably an autoregressive model. We will try different orders (p=1, 2 and 3) and see which one is the best. 

Our ARI (p,1) model can be written as below:
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In Excel’s Worksheet named “AR model”, I used Excel’s built-in regression analysis tool to find the values of the unknown parameters in my ARI (p,1) model.
Note that [image: image17.png]


 is simply a constant corresponding to the intercept of the model. 

I obtained the following equations:
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Now, let’s compare the R2 and the adjusted R2.
Table 1: R2 of the different ARI(p,1) models
	p
	R2
	Adjusted R2

	1
	0.2666
	0.2532

	2
	0.2730
	0.2461

	3
	0.2794
	0.2387


In the last table, we could easily see that the ARI(1,1) model seems to be the best model. First of all, it has fewer variables and, therefore, is simpler to use. Also, the increase in R2 due to the addition of another variable is really small. The adjusted R2 is higher for the ARI(1,1) model, which proves that adding more variables isn’t necessary.

Now, let’s take a look at table 2: 
Table 2a: Analysis of the obtained φ

	p
	φ1
	φ2
	φ3
	Sum of φ

	1
	-0,5157
	
	
	-0,5157

	2
	-0,4679
	0,0933
	
	-0,3746

	3
	-0,4773
	0,1359
	0,0932
	-0,2481


Table 2b: Analysis of the obtained φ and their p-value

	p
	p-value φ1
	p-value φ2
	p-value φ3

	1
	0,000039
	
	

	2
	0,001037
	0,491361
	

	3
	0,000945
	0,365509
	0,495747


Once again, the ARI(1,1) model seems to be the best, since the p-value of both the φ2 and the φ3 parameters is very high. Therefore the model with only one variable is preferable. Also, the absolute value of φ1 is smaller than 1, so the model is stationary.
Residuals analysis
In our case, I used the residuals of my ARI(1,1) model, available in my Excel’s worksheet “AR model” in cells I27 to I83, which I copied in the a new tab named “BPQS”, where I tested the Box-Pierce statistic, the Durbin-Watson statistic and calculated the residuals autocorrelation, following the example provided on the NEAS website.
First of all, I calculated the residuals autocorrelation and obtained a 0,0464, which means that the residuals are nearly not correlated, which they should be, since we expect the residuals to be white noise if our model is well fit.
Residuals analysis – Durbin-Watson Test
The second step was the Durbin-Watson Test, which calculates the autocorrelation of lag 1.
I calculated the Durbin Watson statistic using the following formula:
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If our model is correct and the residuals are white noise, then the regression of the series on the series lagged one period has no serial correlation, so the Durbin-Watson is approximately 2. 
Since our obtained statistic is 1.9066, we suppose that it is sufficiently close to 2 (between 1.8 and 2.2) to suppose that the residuals are white noise.

Residuals analysis – Box and Pierce Statistic
The Box and Pierce Q statistic evaluate whether the residuals have a normal distribution with a variance of 1/T, the T is the number of observations.  Therefore, it indicates if the residuals are a white noise process. This statistic is estimated using the following formula:
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This Q statistic has a χ2 distribution with K-p-q degrees of freedom. In our case, p=1, q=0 and K is the number of residuals autocorrelation.
Using the method provided in NEAS “Time Series Techniques” worksheet, I found a Q statistic of 15.5946. For a 10% significant level with 22 degrees of freedom, the critical value is 29.62. Since our Q statistic is within the critical value, we cannot reject the null hypothesis that the residuals are a white noise process.
In brief, we found that residuals of our time series are probably white noise. Therefore, we can suppose that our ARI(1,1) model is accurate. 

Officially, the equation of our model is:
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Forecasting
In order to validate our model, we will forecast the results for the leading player in terms of points at the end of each season using the previous year. We will then compare predicted value with real observations. To compute our predictions, I used the following formula:
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Table 3: Prediction compared to actual values since 2000

	Year
	Actual Value
	Prediction   [image: image27.png]Y. (1)





	2010
	112
	113,26

	2009
	113
	116,90

	2008
	112
	123,35

	2007
	120
	109,79

	2006
	125
	100,96

	2004
	94
	101,62

	2003
	106
	109,67

	2002
	96
	108,88

	2001
	121
	112,76

	2000
	96
	114,88


Table 3 shows that predictions are actually pretty close to reality. 

Now, let’s take a look at graph 8 which compares every prediction and the actual data. Again, we see that the 2 curves follow the same pattern and are very close. Therefore, our ARI(1,1) model successfully supports our model.
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Conclusion
After all our tests, I conclude that using an ARI(1,1) model to model the time series of the number of points the leading scorer of the NHL will score seems to be a good fit. We found that the residuals of our model form a white noise, which was what we were looking for.
Moreover, the graph comparing predictions with actual data is very interesting and successfully responds to the variation of the actual data. 

I will conclude my project by trying to predict the outcome of the 2010-2011 NHL’s season. Using previous year’s results, the leading scorer at the end of this season would end the season with 113.29 points. Right now, after 51 games, the leading scorer is Steven Stamkos with 67 points in 51 games. At this pace, in 82 games he would score a total of 108 points. 
