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Australia Monthly Basic Iron Production 1989-1994

Introduction

I accessed monthly basic iron production in thousands of mega tonnes from the Time Series Data Library for January 1956 - August 1995.  From this, I extracted data for January 1989 to December 1994 to perform a time series analysis.  

Time Series

The production over these years are shown in the chart below:
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Table 1
This time series has the following auto-correlation function:
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Table 2
Notice that the auto correlation falls quickly toward 0, implying that it is a stationary series; however, it also has a peak at around 12 months.  This implies that the series also has some seasonality.
Deseasonalized time-series

There are a number of ways of dealing with seasonality in time series.  For this project, I will use the method of deseasonalizing data described in Pindyck and Rubinfeld.  

The Table below shows the seasonal adjustment factors derived:
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Table 3
Based on the table above, we see that production tends to peak in the late winter or spring months (July-October) and fall in the summer months (February).  

The seasonally-adjusted production series is shown below along with the unadjusted series:
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Table 4
Deseasonalized Autocorrelation:

We now compute the autocorrelation function using the newly deseasonalized data:
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Table 5
This autocorrelation function rapidly falls to 0, and removes the peaks observed in the unadjusted time series.  Based on the shape of the autocorrelation function, it seems clear that this time-series is not simply a white-noise process.  For completeness though, the Box and Pierce Q statistic is calculated as 215.5, which is significantly above the X-squared statistic for a 95% significance test with 24 degrees of freedom.
Model Specification:

Based on the deseasonalized autocorrelation function, the time series appears to be an autoregressive process.  The first model we will test then is the AR(1).

The Yule-Walker equations tell us that for an AR(1) process φ1 = ρ1.  Therefore, we use the AR(1) process with φ1 = 0.84663.  After applying this process with a δ = 0, we determine that  δ = 82.9, which is the mean of the residuals.  
The table below shows the historically simulated process using the AR(1) process and the actual seasonally adjusted basic iron production:
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Table 6
This process has an R2 = 0.7155.  Which means that the AR(1) process explains 71% of the change from the average production.

While the AR(1) model is clearly very good, we also try an AR model with order p=2-4.  These have the following specifications:

AR(2): yt = 0.7618*yt-1 + 0.1003*yt-2 + 74.88 + εt
AR(3): yt = 0.7696*yt-1 + 0.1595*yt-2 - 0.0778*yt-3 + 80.47 + εt

AR(4): yt = 0.7327*yt-1 + 0.5327*yt-2 + 0.4047*yt-3 - 0.1163*yt-4 + δ + εt

Note that AR(2) and AR(3) are both stationary, but they produce R2 of right around 71.5%, so they offer no additional explanatory power compared to the AR(1) process.

The AR(4) process is not stationary, since the parameters sum to greater than 1.

In conclusion, the AR(1) process is the best model to use.

Testing residuals

We compare the residuals derived from comparing the simulated values and the actual values to determine if there is any kind of moving average component to the time series.  Below is a plot of the residual autocorrelation function:
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Table 7
We can see from this plot that there does not appear to be any autocorrelation among the residuals.  For completeness, we use the Box and Pierce Q statistic.  Q = 19.97.  This compares to the X-square with 23 degrees of freedom at the 90% significance of 32.01.  As a result, we are unable to reject the hypothesis that the residuals are a result of a white noise process.

Forecasting
The original data included actual data for January – August 1995.  We can use this data to test whether our model is adequate for forecasting.  Starting with the December 1994 seasonally adjusted value, we forecast seasonally adjusted values as shown in the table below:

	Month
	Actual
	Seasonal Adj
	Forecast
	Forecast(2)

	Dec-94
	590
	577.53
	577.53
	577.53

	Jan-95
	637
	632.58
	571.8536
	571.8536

	Feb-95
	563
	626.32
	567.0485
	618.4648

	Mar-95
	634
	660.53
	562.9803
	613.1615

	Apr-95
	605
	633.33
	559.5361
	642.122

	May-95
	619
	639.66
	556.6201
	619.0984

	Jun-95
	595
	615.88
	554.1513
	624.4581

	Jul-95
	625
	594.20
	552.0612
	604.3197

	Aug-95
	657
	615.64
	550.2917
	585.9635


Our forecast consistently undervalues the actual production.  It appears this is because there was a significant increase in the seasonally adjusted production that was not captured by the model.  If we continue to use the same model, but reset it each month, so that we use actual information in the new forecast, we come significantly closer.  The chart below shows this in graphical form:
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Conclusion
The monthly production of basic iron ore over the period can be simply modeled as a deseasonalized AR(1) process.  However, this model does not account for significantly monthly changes.  Therefore, the simple model should not be relied upon for forecasting purposes.
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