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Student Project – NEAS Time Series


I decided to try and model something that would be of use at my actual job.  The time series of interest that I am trying to forecast is the maximum weekly rate (for Worker’s Comp in the state of New Jersey) by year, using 31 data points from 1980-2010.  Below are the steps I took in evaluating this time series and creating a model/forecast.  I should note that I have included all steps I took in looking at this data, including pointless steps and steps in the *wrong* direction, to fully document how I went about analyzing the problem.  All graphs and analysis were done in the JMP software program (statistical software produced by SAS).
1) Examine this time series, autocorrelations, and partial autocorrelations:
Year
        Rate
Year
         Rate

	1980
	$185.00
	1996
	$480.00

	1981
	$199.00
	1997
	$496.00

	1982
	$217.00
	1998
	$516.00

	1983
	$236.00
	1999
	$539.00

	1984
	$255.00
	2000
	$568.00

	1985
	$269.00
	2001
	$591.00

	1986
	$284.00
	2002
	$629.00

	1987
	$302.00
	2003
	$638.00

	1988
	$320.00
	2004
	$650.00

	1989
	$342.00
	2005
	$666.00

	1990
	$370.00
	2006
	$691.00

	1991
	$385.00
	2007
	$711.00

	1992
	$409.00
	2008
	$742.00

	1993
	$431.00
	2009
	$773.00

	1994
	$460.00
	2010
	$794.00

	1995
	$469.00
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-This series is clearly not stationary, since the maximum wage (rate) does increase as t increases.  Also (not displayed) the Ljung-Box Q has p < .0001 using any number of lags.  So, without looking any further at autocorrelations, I decided to take the first difference of this time series.
2) Examine this first difference of the maximum wage time series
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-This first difference of the maximum wage series looks like it may have increasing variance over time, although the mean looks somewhat stable.  I’ll examine autocorrelations first before deciding what to do about this.
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-According to the correlogram, there are no significant autocorrelations; according to the Q statistic, the data is white noise.  However, due to the apparent increasing variance of the first-difference data over time, I decided to look at the first difference of log(Max wage) before drawing any conclusions.
3) Examine the first difference of the log of the maximum wage time series
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The series now does not look stationary because of a decreasing mean.  The ACF and PACF for this series are shown below; the shape of the ACF (slow, non-exponential decline in autocorrelations, continuing below 0) also suggests non-stationarity.  I decided to see what a second difference of the data would look like.
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4) Examine the second difference of the log of the maximum wage time series:
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-This series finally looks like it has a constant mean and variance.  The ACF and PACF are shown below.  
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I note that the autocorrelations and partial autocorrelations show a very odd pattern that makes me suspicious about taking the second difference of the data.  However, given an indicated significant lag-1 autocorrelation, I will try IMA(2,1) and ARI(1,2) models to see what results I get before concluding anything:
5) ARIMA(1,2,0):
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The residuals for the ARI(1,2) model are more or less random (some of the negative values are of a larger magnitude than the positive, but we’ll assume this is OK).  The ACF and PACF don’t show any additional significant terms at any lag, and Ljung-Box Q indicates that we are dealing with white noise in the residuals, so the model appears to fit OK.
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The estimated AR parameter is -.4242, and this parameter is significantly different from 0. 
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Let’s look at an IMA(2,1) model now.

6) ARIMA(0,2,1):
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The residuals have a pattern: diagonal (up-right) lines.  This is odd, but more importantly, such patterns don’t qualify as the white noise they are supposed to.
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Ljung-Box Q shows, at various lags, that white noise can be rejected as being the residuals’ pattern.  Given these problematic statistics, we might want to try and add other parameters to this model to explain the residuals.  However, no addition of a reasonable number of parameters appears to be able to fix this problem, based on the patterns in the ACF and PACF.  
At this point, there is a clear indication of something wrong, and another indication comes below.  The estimate of the MA parameter is .9999909, which is suspiciously close to 1.000 (a non-invertible solution).  A look at page 126 (Cryer and Chan) reveals that a white noise series, if differenced (over-differenced), will be best modeled by a MA(1) model with theta = 1.000.  
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So, when I attempt to build a IMA(2,1) model, I get evidence that I have an invalid model of an overdifferenced series; when I built the ARI(1,2) model, I get evidence that I have a reasonably well fit model.
I consulted some other sources on the internet for guidance, being unsure from the textbook what to do from this point onward.  This website contains many rules of thumb which I use or at least consider below:
http://www.duke.edu/~rnau/411arim2.htm
7) Rules of Thumb (not necessarily in order):
Rule 1: If the series has positive autocorrelations out to a high number of lags, then it probably needs a higher order of differencing.

-Going to the correlogram on page 3 of this Word document, we see that this is the case for the ARIMA(0,1,0) first difference.  This is originally why I took a second difference.

Rule 2: If the lag-1 autocorrelation is zero or negative, or the autocorrelations are all small and patternless, then the series does not need a higher order of  differencing. If the lag-1 autocorrelation is -0.5 or more negative, the series may be overdifferenced.  BEWARE OF OVERDIFFERENCING!! 
-The ARIMA(0,1,0) correlogram shows a positive lag-1 autocorrelation and a clear pattern of slowly decreasing autocorrelations with lag, so, higher differencing appears to be possibly necessary.  However, the ARIMA(0,2,0) correlogram shows a -.4208 lag-1 autocorrelation, which is close to the -0.5 rule of thumb above [and therefore showing that ARIMA(0,2,0) was an overdifferencing].  It looks as if one difference is not enough, and two differences may be too much.
Rule 3:  The optimal order of differencing is often the order of differencing at which the standard deviation is lowest.

-While this rule isn’t immediately relevant, the website adds this information:

“We will see later that "mild underdifferencing" can be compensated for by adding AR terms to the model, while "mild overdifferencing" can be compensated for by adding MA terms instead. In some cases, there may be two different models which fit the data almost equally well: a model that uses 0 or 1 order of differencing together with AR terms, versus a model that uses the next higher order of differencing together with MA terms.”

So, given that AR terms can help “difference” a model according to this website, perhaps I should have tried using an ARIMA(1,1,0) model, since Rule 2 seemed to show me that ARIMA(0,1,0) was underdifferenced.  Under this logic, I could maybe use an ARIMA(0,2,1) model because ARIMA(0,2,0) is overdifferenced, but this model with its .9999 MA(1) coefficient is what prompted me to suspect something was wrong.
Rule 5: A model with no orders of differencing normally includes a constant term (which represents the mean of the series). A model with two orders of total differencing normally does not include a constant term. In a model with one order of total differencing, a constant term should be included if the series has a non-zero average trend.
In all of the above printouts [including ARIMA(0,2,1)], I instructed my software program to fit an intercept term to the data.  In twice differenced series, apparently, a constant term is usually excluded.  I should have tried ARIMA(0,2,1) without an intercept term.

So, I will take a break from these rules and try two other models that the rules indicated might work:  ARIMA(1,1,0) and ARIMA(0,2,1) [no intercept term].

8) ARIMA(1,1,0)
-The plot of the residuals shows a slight downward trend.  However, Ljung-Box Q shows white noise in the residuals at any lag, so we may consider this less-than-perfect residual plot to be good enough.
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Below, we see that the model was fit with an AR(1) coefficient of .605 and mean/trend of 

.04867.
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9) ARIMA(0,2,1) – No intercept

In complete contrast to the ARIMA(0,2,1) model with intercept, the non-random pattern in the residuals (diagonals) is less clear, and the Q statistic does not come close to rejecting white noise as the residuals’ pattern.  
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-As shown below, the MA coefficient is also a reasonable .599, rather than .9999 as before.  
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10)  Final Evaluation

I also note that, out of all of the listed goodness-of-fit criteria (Aikaike’s A, Schwarz-Bayes criterion, log-likelihood, etc.), both ARIMA(1,1,0) and ARIMA(0,2,1) are both better than any of the (valid) models I tried to fit to the data before. 
	
	Aikaike A
	Schw-Bayes
	LogLik
	stdev

	IMA(2,1) - Invalid Model
	-158.701
	-155.967
	-162.701
	0.014307

	ARI(1,1)
	-158.232
	-155.43
	-162.232
	0.016641

	IMA(2,1) - no Intercept
	-156.124
	-154.756
	-158.123
	0.015999

	ARI(1,2)
	-153.0234
	-150.289
	-157.023
	0.016674

	ARI(1,1) - no Intercept
	-152.888
	-151.487
	-154.888
	0.017946

	IMA(1,1)
	-152.543
	-149.741
	-156.543
	0.018388

	I(2)
	-149.301
	-147.934
	-151.301
	0.018133

	I(1)
	-147.399
	-145.998
	-149.399
	0.020405


While ARIMA(1,1,0) appears to have a better fit than “ARIMA(0,2,1) – No Intercept” from looking at these statistics (and from looking at their correlograms), I want to consult one final “rule of thumb”:

Rule 4: A model with no orders of differencing assumes that the original series is stationary (mean-reverting). A model with one order of differencing assumes that the original series has a constant average trend (e.g. a random walk or SES-type model, with or without growth). A model with two orders of total differencing assumes that the original series has a time-varying trend (e.g. a random trend or LES-type model).

Since the original data (maximum weekly rate, WC indemnity, state of NJ) are loosely based on wage and inflation figures, it stands to reason that I should decide whether or not this type of data is governed by a constant trend (plus autocorrelated errors), or whether inflation/wages tend to have random, non-constant trends.  
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In making this decision, I also looked at what forecast the models were giving me (up to ten periods out).  When it comes time to predict the future, the predictions of the ARI(1,1) model converge to a 4.97% trend in wages, while the IMA(2,1) – No Intercept model’s Y(>=2) prediction is a 3.37% trend in wages.
	
	Max Wages
	Trend

	
	Actual
	IMA(2,1) - NoInt
	ARI(1,1)
	Actual
	IMA(2,1) - NoInt
	ARI(1,1)

	1996
	$480.00
	$489.84
	$483.75
	2.35%
	0.31%
	-0.82%

	1997
	$496.00
	$497.24
	$496.24
	3.33%
	1.51%
	2.58%

	1998
	$516.00
	$513.30
	$515.76
	4.03%
	3.23%
	3.94%

	1999
	$539.00
	$535.13
	$538.75
	4.46%
	4.25%
	4.46%

	2000
	$568.00
	$560.61
	$564.16
	5.38%
	4.76%
	4.72%

	2001
	$591.00
	$593.90
	$597.68
	4.05%
	5.94%
	5.94%

	2002
	$629.00
	$616.73
	$617.12
	6.43%
	3.84%
	3.25%

	2003
	$638.00
	$661.62
	$665.84
	1.43%
	7.28%
	7.90%

	2004
	$650.00
	$661.32
	$656.01
	1.88%
	-0.04%
	-1.48%

	2005
	$666.00
	$669.09
	$670.14
	2.46%
	1.17%
	2.15%

	2006
	$691.00
	$684.28
	$689.00
	3.75%
	2.27%
	2.81%

	2007
	$711.00
	$712.77
	$720.30
	2.89%
	4.16%
	4.54%

	2008
	$742.00
	$732.66
	$737.43
	4.36%
	2.79%
	2.38%

	2009
	$773.00
	$768.52
	$776.19
	4.18%
	4.89%
	5.26%

	2010
	$794.00
	$802.51
	$807.77
	2.72%
	4.42%
	4.07%

	2011
	
	$820.77
	$822.66
	
	2.28%
	1.84%

	2012
	
	$848.45
	$856.81
	
	3.37%
	4.15%

	2013
	
	$877.06
	$895.22
	
	3.37%
	4.48%

	2014
	
	$906.64
	$937.13
	
	3.37%
	4.68%

	2015
	
	$937.21
	$982.14
	
	3.37%
	4.80%

	2016
	
	$968.82
	$1,030.03
	
	3.37%
	4.88%

	2017
	
	$1,001.49
	$1,080.72
	
	3.37%
	4.92%

	2018
	
	$1,035.26
	$1,134.18
	
	3.37%
	4.95%

	2019
	
	$1,070.17
	$1,190.48
	
	3.37%
	4.96%

	2020
	
	$1,106.26
	$1,249.69
	
	3.37%
	4.97%


Given that inflation/wages tend to increase at different underlying rates depending on the time period, and that the “IMA(2,1) – No Intercept” model recognizes the (widely expected [due to low inflation/interest rates]) lower 2011 and 2012 increases in maximum weekly benefit, I believe that the “IMA(2,1) – No Intercept” model may be more appropriate for this data than the ARI(1,1).  This is despite somewhat better goodness-of-fit statistics for the ARI(1,1) model.
Final model:

Ln(Yt) – 2ln(Yt-1) + ln(Yt-2)  =  et – (.59686634)*et-1
