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Introduction
President-elect Barack Obama has plans to remake U.S. energy strategy. He said so during the election process. His actions during office have proven that is the case as well. In fact, President Barack Obama’s Energy Secretary Steven Chu wants to “figure out a way to boost the price of gasoline to the levels in Europe.” Obama’s incessant refusal to issue new drilling permits in the Gulf, banning drilling in certain geological areas, and new rules mandating the use of renewable energy have directly impacted our lives. President Bush was no saint when it came to free market energy policies either. He mandated the use of ethanol, was reluctant to open up the Other Continental Shelf, and supported the expansion of renewable energy tax credits. However, my focus is on Obama since he is at the helm now. 
What’s the point you might ask? Energy policy directly and indirectly affects the price of gasoline. Gasoline fuels the cars we drive, the lawn equipment we use, and the recreational vehicles we enjoy. Every time I fill up I either struck with pain or jumping in elation. I know. One visit to Europe would cure any hard feelings I have about the ebb and flow of gas prices. 
I would be naïve to believe I could predict future gas prices using only past data. Gas prices, like other business and economic sectors, depend on a myriad of factors that influence the price. Most of these factors will be exogenous relative to my model. 

What does the empirical data tell us about the price of gasoline during Obama’s first two years in office? Using time series techniques I hope to determine whether past values can predict anything of importance for the future.
The process for modeling a time series essentially involves three distinct steps:
· Choosing appropriate values for p, d, and q for a given series: the order d of an integrated process where d is the number of times a series must be differenced to become stationary. 
The values p and q give us an indication of our intention for the model: which model is used and the degree of specification. Autoregressive models (p) and moving average models (q) are typically used during time series analysis. 
· Estimate the parameters of a specific ARIMA (p,d,q) model. The coefficients 
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 are the parameters corresponding to the autoregressive and moving average parts of the model, respectively.
· Determine the “closeness” of the model: a diagnostic check of sorts that allows one to determine the adequacy of the model. If the model is deemed inadequate, additional steps will be taken to locate another model that better fits the data.

Data

The data used during my time series analysis was collected from the U.S. Energy Information Administration
. Since I reside in the state of Texas, I chose weekly Texas regular conventional retail prices. More specifically, I analyzed the period from January 5, 2009 to December 27, 2010, totaling 104 data points. My preconceived estimation was that prices over this period of time would present a noticeable trend, one that rises and falls, but over time rises more than it falls. 
Methods and Analysis 
To begin, we observe the graph of the actual time series, shown in Figure 1 below. The objective is to identify any graphical means, trends, drifts, cycles, and/or seasonality. The horizontal axis (i.e., the x-axis) represents the order of the time series, while the vertical axis (i.e., the y-axis) represents the weekly price of gasoline in Texas (For example, t=7 represents the price of one gallon of gasoline ($1.83) for the week of February 16, 2009). The graph shows a noticeable upward trend, with varying degrees of peaks and valleys along the way. Volatility seems to worsen in week 25, only to level off, and continue a steady rise. A steady decline commences in week 71 yet the year closes on another increase. The statistics indeed show the price of gasoline in Texas has nearly doubled since Barack Obama was elected in office. A steady incline in values appears to suggest our original data is not stationary. 
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Figure 1
Being fair I must not blame only the current President for the gauging currently taking place at the pumps. The graph gives us a picture of what might soon follow, but further analysis is needed to make sense of it all.
A graph of the autocorrelation function (ACF) will ascertain the degree of homogeneity in the data. 
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Figure 2
In other words, it will show whether the statistical properties of any one part of the dataset are the same as another part. Do values depend on previous data? And if so, how strong is the correlation? In addition, the graph will reveal seasonal trends or cycles in the form of peaks and valleys should they exist. If the graph doesn’t reveal a fair degree of homogeneity, one potential solution is to take differences of the original data in hopes of obtaining a stationary series. 


What does the graph in Figure 2 tell us? For one, the data isn’t random. If it were a random dataset, the autocorrelation would trend towards zero. We can surmise that the values going forward are at least somewhat correlated to those from the past. We can deduct from the confidence bands that for the first nine lags we can reject the null hypothesis that there is no autocorrelation between time points. To be useful certain patterns and trends must exist. 
Another key item in a time series model is the laws that govern the behavior of the process.  You want a time series that does not change over time. This is the idea of stationarity. I am not implying a straight line; rather a series that represents some predictability and repetitiveness. 

The graph above exhibits an inconsistent pattern through time, thereby suggesting a non-stationary series. After several lags the correlations still tend to be relatively high. To be useful the series needs to be transformed until it becomes stationary. One option is differencing, which is reflected in the d parameter. Using the original data implies that d=0. Fitting an ARIMA model at this point would be a waste of time.
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Figure 3
In order to determine the necessary level of differencing, we need to examine the plot of the data and correlogram. We shall begin with a first difference of the series, as shown above in Figure 3. The correlogram suggests there are recurring cycles in the data: certain points in time are correlated to other points that are k units apart. Such periodicity helps eliminate the possibility of white noise; however, the peaks and valleys also suggest some seasonality may be present. 
The data being used represents weekly gas prices. Based on the graph the cycle repeats itself approximately every 10 weeks. In an attempt to remove the cyclical trend I “de-season” the differenced data by taking another difference at lags of 10 weeks. “De-seasoning” the first differenced series and taking the autocorrelation results in the following correlogram.
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Figure 4
Our graph isn’t statistically different than the “un-seasoned” graph shown earlier. Again the dampening towards zero is rather slow. However, it’s hard not to notice the graph oscillates slowly back and forth between positive and negative as it trends to zero. 
With only two years of data, at weekly intervals, I may not be able to remove the seasonal variations present in the data. Or another possibility is that the closely spaced data points (weekly) may result in fluctuations that aren’t seasonality. Theoretical with data assembled close together the week-to-week variations may create problems, as evident in the graph below.
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The first differenced graph reveals a pattern that has more variance than we would prefer for modeling purposes. In addition, gas prices shouldn’t possess a seasonal component that repeats itself every 6 weeks or so. Analyzing monthly data over a longer period of time may have been a better option. But I will stick with the horse that got me here. 
Like I stated earlier, additional data may have increased the likelihood I am able to create a model that forecasts future prices well. A trend is present but the constant fluctuation and lack of smoothness is causing problems with the autocorrelations. Therefore, the correlogram doesn’t provide clear guidance as to an appropriate order (p,q) for the models. Spikes in the autocorrelation occur for several lags: look at lag 26 and 27 in figure 3. Ideally we want autocorrelation that dampens to zero quickly. 
As a last ditch effort I took a second difference and a 12-week moving average of the original data. The graphs of the autocorrelation function are found in the tabs Correlogram of 2nd Diff and Correlogram of MA in the attached workbook Time Series Project – Fall 2010 – Dustin Smith.xls.  Again I arrived at graphs similar to the previous ones. A more experienced statistician may be able to smooth the data for better results.
Additional data isn’t currently available for President Obama’s term: hence I will use the data I have. That doesn’t suggest my developed model will result in weak forecasts. Building models on non-seasonally adjusted data is an appropriate exercise as well. The next step is to fit and evaluate various ARIMA models. To keep the model simple yet effective I chose to fit an AR(1), AR(2), and MA(1) model on the first differenced time series. 
Autoregressive time series are modeled as: Yt = δ + [image: image15.png]


  + εt
My autoregressive models are:

AR(1) Yt = εt + 0.0075 + 0.4062[image: image17.png]


  
AR(2) Yt = εt + 0.0078 + 0.4336[image: image19.png]
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The p-value for each of these variables is significant at a 5% level, except for the 0.2771 in the AR(2) model. 
The Durbin-Watson statistic is a statistical test used to detect the presence of autocorrelation in the residuals. A Durbin-Watson statistic (D) always lies between 0 and 4. If a model’s Durbin-Watson statistic is equal to two, then there is no autocorrelation between the residuals, also called a white noise process. If the Durbin-Watson statistic is not close to two, it indicates there may be positive or negative serial correlation between the residuals. A Durbin-Watson statistic less than one would indicate the model might have serious problems. Basically, the statistic is an indication of how well a model fits a data set based on the residuals. The AR(1) has a statistic of 1.90, while the AR(2) has a statistic of 1.97. This implies there is little autocorrelation in the residuals, a positive sign. 
The next check for model reasonability was to calculate the Box-Pierce Q statistic.  A Box-Pierce Q statistic follows a chi-squared distribution with K-p-q degrees of freedom. My calculation for the Box-Pierce Q statistic was done with 97 degrees of freedom. Including too many observations in the calculation seemed to lead to an increase in the likelihood of rejecting the null hypothesis that the residuals follow a white noise process.     

The Box-Pierce statistics for the AR(1) and AR(2) processes are 43.28 and 35.43, respectively. A 10% chi-squared value on 97 degrees of freedom is 115.22.   Because the Box-Pierce statistics are less than 115.22, we cannot reject the null hypothesis that the residuals follow a white noise process.  

Both the Durbin Watson statistics are similar for the AR(1) and AR(2) models.  However the adjusted R-squared value is higher for the AR(1) model. Given these facts, the principle of parsimony tells me I should choose the simpler model, the AR(1) model. In the figure below I graphed the actual residuals versus those predicted by the AR(1) and AR(2) model. 
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The line in red represents the actual residuals. The rampant fluctuation is difficult to fully predict. Both the AR(1) and AR(2) models do a decent job of fitting the overall trend of the data. 
Graphing actual gas prices versus the forecasted developed by the AR(1) model gives me an indication my model does a decent job.
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� For complete data, please visit � HYPERLINK "http://www.eia.doe.gov/" �http://www.eia.doe.gov/�. In the blue section labeled Features click on Latest U.S. Gasoline Prices. In the bottom left corner click on Retail Gasoline Prices. In the top right corner click on Gasoline Historical Data. In the states section click on Texas.
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