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Introduction:

Over the past few years, I have noticed an increasing amount of advertisement associated with the newest electronic technology.  Whether it is through Best Buy, HH Gregg, etc., retailers are bombarding potential customers with ads showcasing the latest in LED / LCD / Plasma home television electronics.  With cheaper technology on the rise, a slumping economy, and holiday sales spikes, I wondered what the sales trends of electronic sales would look like.  

Objective:
This analysis attempts to use time series techniques to forecast future electronic sales trends.  
Data:
This project will focus on the sales trends of US Retail Electronics and Appliance sales, as provided by the US Census Bureau for Monthly Retail and Food Services:  http://www.census.gov/retail/ and http://www.census.gov/retail/mrts/www/data/excel/mrtssales92-present.xls .  We will focus on the 443 series including:  Electronics and appliance stores, Appl., TV, and other elect. Stores, Household appliance stores, Radio, T.V., and other elect. Stores (443, 44311, 443111, & 443112). 

Monthly data was collected from the above Census website from 1992 through October of 2010.  Note all estimates are shown in millions of dollars.  
The graph below shows that up till 2007, there was an increasing trend in retail electronic sales.  This coincides with the recent economic down turn.  
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We will also look at the monthly data series.  You can also see annual spikes in the data, which coincide with increased retail electronic spending around the holiday season.  
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Analysis:
The above graphs have 2 very obvious features.  First, the monthly data in the graph is highly seasonal.  Second, both data series suggest that the data is not stationary.  Despite the recent down turn, both monthly and annually, the data series is distinctively increasing and now decreasing.  As with other ‘luxury’ items, I would expect to see the data take an increasing trend, once the economy gets back on track.  
To confirm our observation of this data series not being stationary, let’s look at the correlogram of this series.  The correlogram was calculated based off the sample autocorrelation function at selected lags.  This was determined using the sample autocorrelation function formula in Econometric Models and Economic Forecasts, Fourth Edition.  
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While the values of the autocorrelation function do cross the zero axis, it does so slowly.  In fact, the value does not cross 0.00 until the 76th lag.  The graph then increases and approaches 0.00 again at the right end point.  The yearend seasonality is still apparent, especially in the older periods.  These observations continued to point me towards the conclusion that this is not a stationary series.  

My next step towards obtaining a stationary series was to calculate a series of first differences.  
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The first differences graph flattens out the overall upward (and later downward) trend.  However, the seasonal spikes have become even more apparent.  Before I attempt to remove the seasonality, I wanted to observe the correlogram of the first differences.  
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The resulting graph shows the data converging to zero, perhaps a bit quicker previous graphs, but everything is still being hindered by the lingering effect of seasonality.  

Since my data is monthly, I will attempt to remove seasonality by taking the 12 month difference of the data (yt – yt-12).  
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There appears to still be some random fluctuation in the data, but the seasonality is not apparent as it was in the previous graphs.  We will now look at the correlogram of the data to see if the series is stationary.  
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The above graph shows that the series falls off quickly, has small values, and settles around zero.  We can conclude at this point that the series is both non-seasonal and stationary.  We are now ready to model the series.  
Autoregressive Models - AR():
Due to the shape of the graph, we will use an autoregressive model to model the series.  I will look at the AR(1) model as well as the AR(2) model.  

Using Microsoft Excel’s formulas, I was able to estimate the intercepts and slopes for the AR(1) and AR(2) models, as well as the Adjusted R2 term for each equation.  
For the AR(1) model, I calculated:  yt = 141.4030 + 0.8037yt-1 + єt        where єt is white noise with mean = 0.  

The Adjusted R2 term was also calculated and is:  Adjusted R2 = 0.6450.  Based on the above information and the Adjusted R2 term, I would conclude that this model is not a good fit for the data series.   

For the AR(2) model, I calculated:  yt = 74.6542 + 0.6405yt-1 + 0.2564yt-2 + єt           where єt is white noise with mean = 0.  The Adjusted R2 term was also calculated and is:  Adjusted R2 = 0.9531.  Based on the above information and the Adjusted R2 term, I would conclude that this mode is a good fit for the data series.   

Durbin – Watson Tests:

My next test is to test for the presence of serial correlation in the two AR() models.  To test this, I will calculate the Durbin-Watson (DW) statistics for each of the models.  
For the AR(1) model, the DW statistic was calculated as:  DW = 2.3703.  A value greater than 2.0000 would suggest that negative serial correlation is present, but since it is somewhat close to 2.0000 we will test the hypothesis that there is no serial correlation.  Since we have a large amount of data points (213), I used the table from the following website to determine my dl and du values.   There is no value for 213, so we will use the values for 200 data points.  
http://www.kfupm.edu.sa/aisys/wbkfupm/departments/math/091/coursefile_data/STAT212_091_03_O3.pdf
For k = 1 and for 200 data points, dl = 1.611 and du = 1.684.  
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2.3890 < 2.3703 < 4.0000 FALSE

2.3160 < 2.3703 < 2.3890 TRUE

2.0000 < 2.3703 < 2.3160 FALSE

1.6840 < 2.3703 < 2.0000 FALSE

1.6110 < 2.3703 < 1.6840 FALSE

0.0000 < 2.3703 < 1.6110 FALSE

So, result is indeterminate


For the AR(2) model, the DW statistic was calculated as:  DW = 2.1084.  Again, this would suggest that negative serial correlation is present, but since this value is very close to 2.000, we will test the hypothesis that there is no serial correlation.
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1.6930 < 2.1084 < 2.0000 FALSE

1.6530 < 2.1084 < 1.6930 FALSE

0.0000 < 2.1084 < 1.6530 FALSE

So, Accept the Null Hypothesis


Box Pierce Test:
Next, I calculated the Box Pierce Q statistic for both the AR(1) and the AR(2) models to test whether or not the residuals of each model resemble a white noise process.  I looked at the residual calculations for k =1 to k = 10 for each of the models.  

For the AR(1) model, the Box Pierce Q statistic came out to 37.87.  This was tested as a chi-squared statistic (χ2) with 9 (10 – 1) degrees of freedom.  Looking up this value in the χ2 table in the Econometric Models and Economic Forecasts, Fourth Edition textbook, it is outside the range of the critical values for 9 degrees of freedom.  Thus, I had to reject my hypothesis that the residuals were white noise.  
For the AR(2) model, the Box Pierce Q statistic came out to 44.40.  Looking up this value in the χ2 table, it is also outside the range of the critical values for 9 degrees of freedom.  Again, I had to reject my hypothesis that the residuals were white noise.  
Conclusion:
Of the models I looked at, and based on the above tests and observations, I feel that the AR(2) model is the better of the two models for forecasting future electronic sales.  Seasonal spikes appear to be modeled in the correct periods, and likewise, the troughs are also in the correct periods.  The forecast does appear to have one obvious flaw.  It appears to be consistently conservative across the periods.  In both the troughs and the peaks, the forecast appears to understate the actual data.  This is especially true with respect to the peaks.  Perhaps expanding the model to a more complex design would help close the gap and shift the forecasted line upwards.  Overall, the forecast does a good job of predicting the month to month directional changes, but understates the actual month to month data points.  
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