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Time Series Project – Winter 2011

The Scoop on Ice Cream Prices

Introduction
The purpose of this project is to analyze ice cream prices over the past decade and fit a model to the data that can be used to predict future prices.  I expect that the data will show strong seasonality, with higher prices in the summer months when demand is strongest due to warmer weather.  In addition I expect that ice cream prices have trended upwards over the last 10 years as many of the key ingredients that go into creating the individual flavors have been impacted by the declining honey bee population 
 
.
Data

Data was found on Brian Gould’s Agriculture and Applied economics website

http://future.aae.wisc.edu/data/monthly_values/by_area/304?area=US&grid=true&tab=prices

Monthly data from July 2000 through December 2010 was used in this analysis.  Data from July 2000 through June 2010 was used to fit a model.  The predicted values for July 2010 through December 2010 based on the selected model were then compared to actual data.  Note that data was not adjusted for inflation as it was assumed that the low inflation during the last decade would have had minimal impact on ice cream prices.

Model Specification
Graphing the price of ice cream over the last ten years shows a general upward trend.  There appears to have been a decrease in prices from August 2004 through November 2005, but after that prices increased again.  There were also a few outliers in 2003 and earlier.  Surprisingly, there is no obvious seasonality in the data.  It is difficult to discern an obvious model from this chart. 
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The sample autocorrelation function was then graphed which shows the correlation for each lagged value. The correlation is the ratio of the sample covariance to the sample variance. The formula for autocorrelation is 
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 for k =1, 2, …
The autocorrelation chart does not suggest stationarity as it does not drop quickly to zero or fluctuate around a constant mean.  In this instance the autocorrelation drops to zero and then becomes negative before increasing again towards 0.

[image: image4.emf]Autocorrelation Function of Original Series
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Applying the principle that prices follow a logarithmic pattern, we took the log of first differences:
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[image: image6.emf]Autocorrelation Function of Log First Differences
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The autocorrelation function of the log of first differences shows a clear trend toward zero with decreasing fluctuations at about lag 100 which suggests stationarity.  We will assume stationarity and fit 3 models to the log first difference data: AR(1) model, AR(2) model and MA(1) model.
Model Parameterization 

We estimated the parameters for the autoregressive models of first and second order as well as the moving average model of first order using the method of moments – Yule Walker equations.  For the auto regressive models these parameters were confirmed using regression analysis.

AR (1): Yt = 0.003 – 0.499Yt-1
AR (2): Yt = 0.004 – 0.221Yt-1 – 0.611Yt-2

MA (1): Yt = 0.0023 + 0.934εt-1
Model Diagnostics

The sum of co-efficients for each model was less than one which is consistent with our assumption that the series is stationary.  We then graphed each of the 3 models to see if any models provided a better fit visually.  

[image: image7.emf]AR(1) Actual vs. Expected

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

Actual

Expected


[image: image8.emf]AR(2) Actual vs. Expected
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[image: image9.emf]MA(1) Actual Vs. Expected
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The above charts show that the AR(1) and AR(2) models are clearly the better fit.  The MA(1) model matches the high peaks in the initial years but then is much higher than the actual values for the middle data points before again decreasing to approximately the actual values.  We then ran some diagnostic tests on the models to determine if statistically we could back up what we saw visually in the charts.

The first statistic we examined was the Durbin Watson statistic which is used to detect autocorrelation:
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Table 1 on the following page shows the Durbin Watson statistic for all 3 models.  The values for the AR(1) and AR(2) models are approximately 2, indicating that there is almost no autocorrelation present in either model.  The low value of the Durbin Watson statistic for the MA(1) model indicates positive serial correlation, and we rejected the MA(1) model on this basis.

Table 1: Model Diagnostics

	Model
	AR(1)
	AR(2)
	MA(1)

	Durbin-Watson
	2.22
	2.08
	1.30

	Box-Pierce Q
	76.55
	61.94
	177.56

	Chi-Sqaure (10%)
	135.90
	134.81
	135.90

	Sum of Co-efficients
	(0.50)
	(0.83)
	0.93

	Degrees of Freedom
	117
	116
	117


We next used a comparison between the Box Pierce Q statistic and the Chi-Square critical value to determine if the residuals are a white noise process.  As expected the Box Pierce Q statistic for the MA(1) model was very large when compared to the Chi-Square critical value indicating a bad model fit.  The Box Pierce Q statistic for the AR(2) Model was slightly lower than that of the AR (1) Model as was the Durbin Watson statistic indicating that AR(2) model was a slightly better fit.  Indeed, the regression analysis performed in excel showed an R2 of 0.29 for the AR(2) model vs. 0.25 for the AR(1) model.  
Although we want to use the simplest model possible, it appears that the AR(2) model is the better fit.  As such we will proceed with comparing our projections for July through December 2010 based on this model.
Forecast vs. Actual

The following chart compares the actual versus for predicted values of the log of first differences from July through December 2010 using the AR(2) model.  While the predicted values follow the same pattern of increases and decreases as the actual they do not account for the large peak in October.  Given the fairly low R2 value for this model, this result is not surprising.
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Conclusion:
The AR(2) model is an okay estimator for predicting whether ice-cream prices will rise or fall.  However the model does not accurately capture the height of peaks and troughs.  A more detailed time series model would be needed to better capture the fluctuations in price.  Note that ice-cream prices did not appear to be seasonal.   

� “Disappearing bees threaten ice cream sellers”, February 2008 – CNN, http://money.cnn.com/2008/02/17/news/companies/bees_icecream/


� “Declining honey bee numbers causing increased food prices”, July 2010 - http://bees.msu.edu/2010/07/declining-honey-bee-numbers-causing-increased-food-prices/
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