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Modeling number of crimes reported in Washington, DC.

Introduction
Many residents of Washington DC metropolitan area would undoubtedly be curious to know when is the best time to explore our nation's capital. The city, known as the "murder capital" in the 1990s has been gradually becoming safer as the homicide rates have dropped to their lowest level since 1963. The objective of this project is to find a model that would accurately predict the criminal activity.
Data
The Data for this project has been collected from the DC Police Department's crime mapping application, http://crimemap.dc.gov/. Since the system contained daily data starting from 1/1/2006, the number of offenses reported per month from 1/1/2006 to 12/31/2010 were used to build the model and the number of offenses reported for 1/1/2011 was used to test the model's forecast. The data excludes the offenses that could not be mapped which represents 3% of the overall data.
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Sample Autocorrelation Function
Stationarity of the data can be determined by looking at the sample autocorrelation function, rk, at lag k, defined as [image: image3.png]= Lk (V) (k= F)
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 =1, 2, … . A plot of rk versus lag k, which is often called a correlogram will indicate that the data is stationary if rk decreases quickly to zero and fluctuates around a common mean.
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The sample autocorrelation, decreases to almost 0 at lag 3 and then oscillates around the common mean of 0 until it tails off at lags 45+. The peaks of the sample autocorrelation seem to come in at 12,24, 36 and 48 lags, thus indicating strong seasonality.
Seasonality
Since there is strong seasonality in the data, either it needs to be deseasonalized or a seasonal component must be fitted to the data. To deseasonalize data, a Ratio-to-Moving Average method was used to calculate the seasonal adjustment factors. The calculated factors show that the number of tends to be low in winter and high in summer with February having the least amount of crimes and July tending to have the most amount of crimes. Deseasonalized ACF decreases to 0 at lag 12 and the autocorrelation does not oscillate around a common mean. Another way to deseasonalize data is by taking 12 month differences. The ACF of the differenced data behaves better than the deseasonalized one, however, by differencing, some  information is lost from the model.
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Model Considerations

Since the ACF of sample data, deseasonalized data and differenced data doesn't have any sharp drop-offs and instead decreases gradually to 0, this suggested an auto-regressive model rather than the moving-average model. Furthermore, since  r1 > 0.5 for sample data, deseasonalized data and differenced data, the method of moments will fail to yield an estimate for θ should we try to fit an MA(1) model, so the choice of a moving-average model would be in considerable doubt. So, the models analyzed were AR(1), AR(2), AR(1)12, AR(1)x(1)12, AR(2)x(1)12, AR(2)x(2)12 using sample data. AR(1) and AR(2) using deseasonalized data. AR(1) and AR(2) using differenced data. The parameter estimation was done using the Regression tool in Excel.
Parameter Estimation - Deseasonalized Data
AR(1): Yt = 0.5758*Yt-1 + 1182.6566
AR(2): Yt = 0.5519*Yt-1 + 0.0423*Yt-2 + 1128.4394

Parameter Estimation - Differenced Data

AR(1): Yt = 0.5184*Yt-1 - 22.3718

AR(2): Yt = 0.5391*Yt-1 + 0.0116*Yt-2 - 13.6050

Parameter Estimation - Sample Data

AR(1):Yt = 0.6114*Yt-1 + 1083.8876
AR(2):Yt = 0.6389*Yt-1 - 0.0639*Yt-2 + 1193.8180
AR(1)12:Yt = 0.7569*Yt-12 + 649.8821
AR(1)x(1)12:Yt = 0.4845*Yt-1 + 0.5432*Yt-12 - 105.5683
AR(2)x(1)12: Yt = 0.5137*Yt-1 - 0.0441*Yt-2 + 0.5137*Yt-12 - 55.6445
AR(2)x(2)12: Yt = 0.6056*Yt-1 - 0.0383*Yt-2 + 0.6204*Yt-12-0.2462*Yt-13  + 143.8080
Results Analysis

Table 1 and Table 2 show the Adjusted R-Square, Durbin-Watson statistic, Box-Pierce Q statistic and  the Chi-Square critical value for the tested models. The Durbin-Watson statistic that is close to 2 is indicative of stationarity and the Box-Pierce statistic must be below Chi-Square critical value for the model to be stationary.
Model AR(1)x(1)12 is not stationary because the coefficients sum up to greater than 1. Deseasonalized AR(2) model has a DWS statistic that is closest to 2 and the Q statistics are low for the Deseasonalized AR(2), Differenced AR(2), AR(1)x(1)12, AR(2)x(1)12, AR(2)x(2)12 models. Although all models have the Q statistics be below the critical values. The AR(2)x(2)12 model has the highest Adjusted R-Square, thus indicating that it's the best fit for the data. Since it's Durbin-Watson statistic is close to 2 and it's Box Pierce Q statistic is significantly below the critical values for all lags, it seems to be the best choice.
The residuals of AR(2)x(2)12 appear random and do not give cause to doubt the stationarity of the model. The graph of the Actual Data versus the predicted data shows  that the model fits the actual data quite well aside from the dip in February 2010.
	 
	Deseasonalized Data
	Differenced Data
	 

	 
	AR(1)
	AR(2)
	AR(1)
	AR(2)
	Chi-Square

	Adjusted R-Square
	0.3133
	0.3047
	0.2513
	0.2586
	@10%

	Durbin-Watson
	2.0103
	1.9951
	1.9048
	1.9827
	Confidence

	Lag
	Box-Pierce Q-Statistic 
	Box-Pierce Q-Statistic 
	Interval

	10
	3.0325
	2.6410
	3.8574
	3.3045
	14.6837

	11
	3.1377
	2.7120
	3.9020
	3.3869
	15.9872

	12
	4.7905
	3.9634
	7.9193
	5.7821
	17.2750

	13
	5.0829
	4.1701
	7.9202
	5.8112
	18.5493

	14
	5.3478
	4.4286
	7.9611
	5.8176
	19.8119

	15
	5.3778
	4.4451
	8.1254
	6.0353
	21.0641

	16
	5.6891
	4.7799
	8.1421
	6.0719
	22.3071

	17
	6.5145
	5.5463
	9.0081
	6.7264
	23.5418

	18
	6.5164
	5.5640
	9.2586
	6.8612
	24.7690

	19
	6.7854
	5.8755
	9.2950
	6.8838
	25.9894

	20
	6.8274
	5.9115
	9.3137
	6.9013
	27.2036

	21
	6.9719
	6.0154
	9.5525
	7.0943
	28.4120

	22
	7.4213
	6.3273
	9.5584
	7.1000
	29.6151

	23
	7.4262
	6.3506
	9.9904
	7.5158
	30.8133

	24
	9.8589
	9.6271
	10.1245
	7.6914
	32.0069

	25
	10.1980
	10.1823
	10.4035
	8.0450
	33.1962

	26
	10.2706
	10.3183
	10.4107
	8.0812
	34.3816

	27
	11.8194
	11.9026
	12.4015
	9.9585
	35.5632

	28
	12.5443
	12.7190
	13.9969
	11.4473
	36.7412

	29
	12.5497
	12.7383
	14.0209
	11.4542
	37.9159

	30
	13.3617
	13.4197
	15.1601
	12.2475
	39.0875

	31
	14.1318
	14.1723
	15.4800
	12.6535
	40.2560

	32
	14.2836
	14.3224
	15.9955
	13.4629
	41.4217

	33
	14.4277
	14.4908
	16.5456
	14.1382
	42.5847

	34
	15.0133
	15.1053
	16.5459
	14.2670
	43.7452

	35
	15.0702
	15.1534
	16.7972
	14.3540
	44.9032

	36
	15.0718
	15.2264
	16.8417
	14.4593
	46.0588

	37
	16.1381
	16.1333
	16.8462
	14.5052
	47.2122

	38
	16.6705
	16.6892
	16.8713
	14.5084
	48.3634

	39
	17.6005
	17.5486
	17.0312
	14.5618
	49.5126

	40
	17.8755
	17.8349
	17.2190
	14.6235
	50.6598


Table  1: Deseasonalized and Differenced Model results:
	 
	Sample Data
	 

	 
	AR(1)
	AR(2)
	AR(1)12
	AR(1)x(1)12
	AR(2)x(1)12
	AR(2)x(2)12
	Chi-Square

	Adjusted R-Square
	0.3572
	0.3505
	0.3930
	0.5871
	0.5790
	0.5906
	@10%

	Durbin-Watson
	1.8734
	1.9285
	0.8442
	1.7351
	1.7946
	1.8855
	Confidence

	Lag
	Box-Pierce Q-Statistic 
	Interval

	10
	11.9243
	13.4195
	30.7802
	4.3977
	4.5643
	2.7817
	14.6837

	11
	12.2109
	13.4967
	30.8296
	4.9736
	5.0217
	3.4605
	15.9872

	12
	23.4530
	20.8827
	31.1352
	4.9990
	5.0501
	4.2926
	17.2750

	13
	23.8305
	21.4269
	31.1670
	5.0907
	5.2118
	4.3181
	18.5493

	14
	23.8778
	21.5778
	31.2787
	5.4440
	5.5373
	4.6586
	19.8119

	15
	23.9251
	21.8028
	31.3041
	5.5652
	5.6600
	4.7918
	21.0641

	16
	25.1776
	23.0140
	31.4186
	5.9135
	5.9915
	5.0079
	22.3071

	17
	25.8761
	23.4808
	32.0391
	6.2357
	6.2639
	5.5976
	23.5418

	18
	26.6929
	24.1940
	32.1903
	6.2959
	6.3421
	5.6991
	24.7690

	19
	27.3103
	24.9196
	32.6508
	6.5594
	6.5633
	6.0885
	25.9894

	20
	29.8363
	26.7443
	32.7617
	6.6523
	6.6419
	6.1154
	27.2036

	21
	29.8773
	26.8171
	32.7716
	6.6777
	6.6613
	6.2617
	28.4120

	22
	31.0479
	27.8083
	32.7811
	6.7064
	6.6884
	6.2617
	29.6151

	23
	31.0643
	27.9071
	32.8628
	7.0290
	7.0968
	6.4715
	30.8133

	24
	36.7103
	32.9196
	32.9250
	7.1194
	7.1783
	6.4820
	32.0069

	25
	36.9946
	33.0608
	32.9493
	7.1247
	7.1784
	6.6052
	33.1962

	26
	37.0137
	33.0895
	33.3958
	7.1739
	7.2335
	6.6422
	34.3816

	27
	37.0737
	33.0904
	36.6677
	9.9014
	9.8907
	8.5779
	35.5632

	28
	38.0162
	33.8723
	40.8343
	12.4032
	12.4024
	10.5087
	36.7412

	29
	38.2580
	33.9038
	43.1832
	12.4060
	12.4033
	10.5696
	37.9159

	30
	39.0119
	34.9426
	46.5487
	13.2556
	13.3333
	11.9013
	39.0875

	31
	39.2658
	35.2024
	47.7468
	13.2650
	13.3412
	11.9588
	40.2560

	32
	40.8662
	36.2422
	49.4063
	14.0753
	14.1816
	12.3887
	41.4217

	33
	41.1138
	36.6791
	50.6894
	14.8340
	14.9167
	12.7991
	42.5847

	34
	41.6375
	37.2841
	50.9560
	14.9375
	15.0180
	12.8088
	43.7452

	35
	41.6376
	37.3048
	50.9560
	14.9417
	15.0206
	12.9520
	44.9032

	36
	46.1442
	41.0481
	51.0106
	16.5966
	16.7181
	14.5837
	46.0588

	37
	46.1603
	41.1039
	51.0580
	17.2692
	17.4111
	15.0815
	47.2122

	38
	46.2818
	41.1702
	51.0972
	17.2695
	17.4175
	15.0872
	48.3634

	39
	46.5415
	41.9141
	51.1657
	17.3054
	17.4588
	15.0872
	49.5126

	40
	46.5432
	41.9201
	51.2395
	17.3626
	17.5286
	15.1934
	50.6598


Table 2: Sample Data model results
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Conclusion:
The forecast of the selected model for January 2011 was 2336, which is 189 higher than the actual number of crimes reported. The reason for it could be the winter storm with heavy snowfall that happened in the middle of January and thus caused less crimes to be committed/reported during those few days.  Since the average amount of daily crimes reported for the examined time period is ~92, discounting the impact of the snowstorm the forecast is reasonable. However, since the p-value for Yt-2 variable was high, it means it was not statistically significant and thus the model has further potential to be refined. 
