TS Module 5 moving average $\mathrm{MA}(2)$ practice problems
(The attached PDF file has better formatting.)
Time series MA(2) process practice problems
** Exercise 5.1: Variances, autocovariances, and autocorrelations of moving average process of order 2
A moving average process of order 2 is $Y_{t}=e_{t}-\theta_{1} e_{t-1}-\theta_{2} e_{t-2}$, with $\theta_{1}=0.7, \theta_{2}=0.5$, and $\sigma_{e}=2$.
A. What is γ_{0}, the variance of Y_{t} ?
B. What is γ_{1}, the autocovariance of Y_{t} and Y_{t-1} ?
C. What is γ_{2}, the autocovariance of Y_{t} and Y_{t-2} ?
D. What is ρ_{1}, the autocorrelation of Y_{t} and Y_{t-1} ?
E. What is ρ_{2}, the autocorrelation of Y_{t} and Y_{t-2} ?

Part A: $\gamma_{0}=\left(1+\theta^{2}{ }_{1}+\theta^{2}{ }_{2}\right) \times \sigma^{2}{ }_{\mathrm{e}}=(1+0.49+0.25) \times 2^{2}=6.960$
Y_{t} is the sum of three independent random variables: e_{t}, e_{t-1}, and e_{t-2}, with coefficients of $1,-\theta_{1}$, and $-\theta_{2}$.
Each random variable has a variance of $\sigma^{2}{ }_{\varepsilon}$. The variance of the sum is the sum of the variances of each term times the square of its coefficient.

Part B: $\gamma_{1}=\left(-\theta_{1}+\theta_{1} \cdot \theta_{2}\right) \times \sigma_{\varepsilon}^{2}=(-0.7+0.7 \times 0.5) \times 2^{2}=-1.400$
Jacob: γ_{1} is the autocovariance of lag 1. Why does θ_{2} affect this autocovariance? If the random variable $\epsilon_{\mathrm{t}-1}$ increases one unit, Y_{t-1} increases one unit and Y_{t} increases $1 \times-\theta_{1}$ units. The covariance is in terms of the variances: for each 1 variance change of $\epsilon_{\mathrm{t}-1}, Y_{\mathrm{t}}$ decreases $\theta_{1} \times \sigma^{2}{ }_{\varepsilon}$. I understand that θ_{2} affects the two period ahead value of the time series; why does it affect the one period ahead value?

Rachel: Your reasoning shows the effect of $\epsilon_{\mathrm{t}-1}$ on Y_{t}. Your conclusion is correct: the covariance of $\epsilon_{\mathrm{t}-1}$ and Y_{t} is $-\theta_{1} \times \sigma^{2}{ }_{\varepsilon}$.

- This exercise asks for the covariance of Y_{t-1} and Y_{t}.
- $\mathrm{Y}_{\mathrm{t}-1}$ may change randomly for two reasons: random fluctuations of $\epsilon_{\mathrm{t}-1}$ and random fluctuations of $\epsilon_{\mathrm{t}-2}$.
- A one unit random fluctuation in ϵ_{t-2} causes a change of $-\theta_{1}$ in Y_{t-1} and $-\theta_{2}$ in Y_{t}.
- The resulting autocorrelation of Y_{t-1} and Y_{t} is $-\theta_{1} \times-\theta_{2}=\theta_{1} \times \theta_{2}$.

Jacob: That explanation makes sense, but now I don't understand the autocovariance for an AR(2) process.

- In an $\operatorname{AR}(2)$ process, a change in Y_{t-1} may reflect a random fluctuation in ϵ_{t-1} or a random fluctuation in ϵ_{t-2}.
- A random fluctuation of 1 unit in ϵ_{t-1} causes a one unit change in Y_{t-1}, which causes a change of ϕ_{1} in Y_{t}.
- A random fluctuation of one unit in $\epsilon_{\mathrm{t}-2}$ causes a change of ϕ_{1} in $\mathrm{Y}_{\mathrm{t}-1}$ and a change of ϕ_{2} in Y_{t}

By your logic, ρ_{1} for an $\operatorname{AR}(2)$ process should be $\phi_{1}+\phi_{1} \times \phi_{2}$, instead of just ϕ_{1}.
Rachel: For an MA(2) process, θ_{1} considers the random fluctuation in just $\epsilon_{\mathrm{t}-1}$. The random fluctuation in $\epsilon_{\mathrm{t}-2}$ is picked up by θ_{2}. For an $\operatorname{AR}(2)$ process, θ_{1} considers all changes in Y_{t-1}, whether they come from random fluctuations in $\epsilon_{\mathrm{t}-1}$ or $\epsilon_{\mathrm{t}-2}$ or any other error term. The ϕ_{1} parameter relates all these changes to Y_{t}

Jacob: Your explanation makes sense, but now I don't understand the ρ_{2} in an $\operatorname{AR}(2)$ process.

- ϕ_{1} is the effect of Y_{t-1} on Y_{t}.
- ϕ_{2} is the effect of $\mathrm{Y}_{\mathrm{t}-1}$ on $\mathrm{Y}_{\mathrm{t}+1}$.

The covariance of lag 2, γ_{2}, is $\left(\phi_{1}^{2}+\phi_{2}\right) \times \sigma_{\varepsilon}^{2}$. This seems to double count. The effect of Y_{t-1} on Y_{t+1} includes the two step effect of Y_{t-1} on Y_{t} and of Y_{t} on Y_{t+1}. Isn't this two step effect double counted in γ_{2} ?

Rachel: You are confusing ϕ_{2} with ρ_{2}.

- $\quad \rho_{2}$ is the effect of Y_{t-1} on Y_{t+1}, including all multi-step effects.
- ϕ_{2} is the direct effect of Y_{t-1} on Y_{t+1}, independent of any multi-step effects.

The formula for ρ_{2} combines all the independent effects of the ϕ parameters.

Part C: $\gamma_{2}=\left(-\theta_{2}\right) \times \sigma^{2}=-0.5 \times 2^{2}=-2.000$
Part D: $\rho_{1}=\left(-\theta_{1}+\theta_{1} \times \theta_{2}\right) /\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)=-0.201$
Part E: $\rho_{2}=\left(-\theta_{2}\right) /\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}\right)=-0.287$
(See Cryer and Chan page 62, equation at bottom of page)
For $\operatorname{AR}(1), \operatorname{AR}(2), M A(1), M A(2)$, and ARMA(1,1) processes, know how to calculate $\gamma_{0}, \gamma_{1}, \gamma_{2}, \rho_{1}$, and ρ_{2} from $\phi_{1}, \phi_{2}, \theta_{1}$, and θ_{2}. For an MA(2) process:
$\gamma_{0}=\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}\right) \times \sigma^{2}$
$\gamma_{1}=\left(-\theta_{1}+\theta_{1} \times \theta_{2}\right) \times \sigma^{2}$
$\gamma_{2}=\left(-\theta_{2}\right) \times \sigma^{2}$
$\rho_{1}=\left(-\theta_{1}+\theta_{1} \times \theta_{2}\right) /\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}\right)$

$$
\begin{aligned}
& \rho_{2}=\left(-\theta_{2}\right) /\left(1+\theta_{1}{ }^{2}+\theta_{2}{ }^{2}\right) \\
& \rho_{\mathrm{k}}=0 \text { for } \mathrm{k}=3,4, \ldots
\end{aligned}
$$

See Cryer and Chan, page 63 (equation 4.2.3)
**Exercise 5.2: Variance and autocorrelations of moving average process
A moving average process of order 2 is $Y_{t}=e_{t}-0.6 e_{t-1}-e_{t-2}$, with $\sigma_{e}^{2}=1$
A. What is γ_{0}, the variance of Y_{t} ?
B. What is γ_{1}, the autocovariance of lag 1?
C. What is γ_{2}, the autocovariance of lag 2?
D. What is ρ_{1}, the autocorrelation of lag 1?
E. What is ρ_{2}, the autocorrelation of lag 2?

Part A: $\gamma_{0}=\left(1+\theta^{2}{ }_{1}+\theta^{2}{ }_{2}\right) \times \sigma^{2}=\left(1+0.6^{2}+1^{2}\right) \times 1=2.36$
Intuition: Y_{t} is the sum of three independent random variables, with variances of $1,0.36$, and 1 .
See Cryer and Chan, chapter 4, page 62, equation at the bottom of the page.
Part B: The autocovariance of lag 1 is $-\theta_{1} \times\left(1-\theta_{2}\right)=+0.6 \times(1-1)=0$.
Part C: The autocovariance of lag 2 is $-\theta_{2}=-1$.
Part D: See Cryer and Chan, chapter 4, page 63, equation 4.2.3.
$\rho_{1}=\frac{-\theta_{1}\left(1-\theta_{2}\right)}{1+\theta_{1}^{2}+\theta_{2}^{2}} \quad \rho_{1}=\frac{-\theta_{1}+\theta_{1} \theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}$
$(-0.6+0.6 \times 1) /\left(1+0.6^{2}+1^{2}\right)=0 / 2.36$
ρ_{1} is the correlation of $e_{t}-0.6 e_{t-1}-e_{t-2}$ with $e_{t-1}-0.6 e_{t-2}-e_{t-3}$

- The numerator has two non-zero terms: $-0.6 \mathrm{e}_{\mathrm{t}-1}$ and $+0.6 \mathrm{e}^{2}{ }_{\mathrm{t}-2}$
- The error terms have the same variance, so these two terms cancel out.

Jacob: Does $\rho_{2}=0$ mean that the sample autocorrelation of lag 1 in this time series is zero?
Rachel: Actual time series are finite, so sample autocorrelations have random fluctuations. If the time series has 100 observations, the sample autocorrelation r_{1} is distributed as a normal random variable with a mean of zero and a standard error of $1 / \sqrt{ } 100=0.10$. The observed autocorrelation is not zero. But if the time series is infinite, the sample autocorrelation of lag 2 approaches zero. This exercise assumes the moving average parameters are known and asks about the true autocorrelations.

Jacob: How should we think of this? Can one see the correlation intuitively?
Rachel: e_{t} is correlated with e_{t-1} two ways:

- Directly, with a correlation of $-\theta_{1}$.
- Indirectly through e_{t-2} and back to e_{t-1}, with a correlation of $-\theta_{2} \times-\theta_{1}$.

Moving from e_{t-1} to e_{t-2} is like moving from e_{t-2} to e_{t-1}. We deal with these relations in more detail in modules 19 and 20 (seasonal time series), where $\rho_{11}=\rho_{13}$.

Part E: See Cryer and Chan, chapter 4, page 63, equation 4.2.3
$\rho_{2}=\frac{-\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}$
$(-1) /\left(1+0.6^{2}+1^{2}\right)=-1 / 2.36=-0.424$
Intuition: ρ_{2} is the correlation of $e_{t}-0.6 e_{t-1}-e_{t-2}$ with $e_{t-2}-0.6 e_{t-3}-e_{t-4}$

- The numerator has one non-zero term: $-1 \times \mathrm{e}_{\mathrm{t}-2}^{2}$
- The denominator is the variance γ_{0}

