TS Module 5 moving average MA(2) practice problems

(The attached PDF file has better formatting.)

Time series MA(2) process practice problems

** Exercise 5.1: Variances, autocovariances, and autocorrelations of moving average process of order 2

A moving average process of order 2 is $Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}$, with $\theta_1 = 0.7$, $\theta_2 = 0.5$, and $\sigma_e = 2$.

- A. What is γ_0 , the variance of Y_t ?
- B. What is γ_1 , the autocovariance of Y_t and Y_{t-1} ?
- C. What is γ_2 , the autocovariance of Y_t and Y_{t-2} ?
- D. What is ρ_1 , the autocorrelation of Y_t and Y_{t-1} ?
- E. What is ρ_2 , the autocorrelation of Y_t and Y_{t-2} ?

Part A: $\gamma_0 = (1 + \theta_1^2 + \theta_2^2) \times \sigma_e^2 = (1 + 0.49 + 0.25) \times 2^2 = 6.960$

 Y_t is the sum of three independent random variables: e_t , e_{t-1} , and e_{t-2} , with coefficients of 1, $-\theta_1$, and $-\theta_2$.

Each random variable has a variance of σ^2_{ϵ} . The variance of the sum is the sum of the variances of each term times the square of its coefficient.

Part B: $\gamma_1 = (-\theta_1 + \theta_1 \cdot \theta_2) \times \sigma_{\epsilon}^2 = (-0.7 + 0.7 \times 0.5) \times 2^2 = -1.400$

Jacob: γ_1 is the autocovariance of lag 1. Why does θ_2 affect this autocovariance? If the random variable ϵ_{t-1} increases one unit, Y_{t-1} increases one unit and Y_t increases $1 \times -\theta_1$ units. The covariance is in terms of the variances: for each 1 variance change of ϵ_{t-1} , Y_t decreases $\theta_1 \times \sigma_{\epsilon}^2$. I understand that θ_2 affects the two period ahead value of the time series; why does it affect the one period ahead value?

Rachel: Your reasoning shows the effect of ϵ_{t-1} on Y_t . Your conclusion is correct: the covariance of ϵ_{t-1} and Y_t is $-\theta_1 \times \sigma_{\epsilon}^2$.

- This exercise asks for the covariance of Y_{t-1} and Y_t.
- Y_{t-1} may change randomly for two reasons: random fluctuations of ϵ_{t-1} and random fluctuations of ϵ_{t-2} .
- A one unit random fluctuation in ε_{t-2} causes a change of -θ₁ in Y_{t-1} and -θ₂ in Y_t.
- The resulting autocorrelation of Y_{t-1} and Y_t is $-\theta_1 \times -\theta_2 = \theta_1 \times \theta_2$.

Jacob: That explanation makes sense, but now I don't understand the autocovariance for an AR(2) process.

- In an AR(2) process, a change in Y_{t-1} may reflect a random fluctuation in ε_{t-1} or a random fluctuation in ε_{t-2} .
- A random fluctuation of 1 unit in ϵ_{t-1} causes a one unit change in Y_{t-1} , which causes a change of ϕ_1 in Y_t .
- A random fluctuation of one unit in ϵ_{t-2} causes a change of ϕ_1 in Y_{t-1} and a change of ϕ_2 in Y_t .

By your logic, ρ_1 for an AR(2) process should be $\phi_1 + \phi_1 \times \phi_2$, instead of just ϕ_1 .

Rachel: For an MA(2) process, θ_1 considers the random fluctuation in just ϵ_{t-1} . The random fluctuation in ϵ_{t-2} is picked up by θ_2 . For an AR(2) process, θ_1 considers all changes in Y_{t-1} , whether they come from random fluctuations in ϵ_{t-1} or ϵ_{t-2} or any other error term. The ϕ_1 parameter relates all these changes to Y_t

Jacob: Your explanation makes sense, but now I don't understand the ρ_2 in an AR(2) process.

- ϕ_1 is the effect of Y_{t-1} on Y_t .
- φ₂ is the effect of Y_{t-1} on Y_{t+1}.

The covariance of lag 2, γ_2 , is $(\phi_1^2 + \phi_2) \times \sigma_{\epsilon}^2$. This seems to double count. The effect of Y_{t-1} on Y_{t+1} includes the two step effect of Y_{t-1} on Y_t and of Y_t on Y_{t+1} . Isn't this two step effect double counted in γ_2 ?

Rachel: You are confusing ϕ_2 with ρ_2 .

- ρ₂ is the effect of Y_{t-1} on Y_{t+1}, including all multi-step effects.
- ϕ_2 is the *direct* effect of Y_{t-1} on Y_{t+1} , independent of any multi-step effects.

The formula for ρ_2 combines all the independent effects of the ϕ parameters.

rho₂ for AR(2) process

Part C: $\gamma_2 = (-\theta_2) \times \sigma^2 = -0.5 \times 2^2 = -2.000$

Part D: $\rho_1 = (-\theta_1 + \theta_1 \times \theta_2) / (1 + \theta_1^2 + \theta_2^2) = -0.201$

Part E: $\rho_2 = (-\theta_2) / (1 + \theta_1^2 + \theta_2^2) = -0.287$

(See Cryer and Chan page 62, equation at bottom of page)

For AR(1), AR(2), MA(1), MA(2), and ARMA(1,1) processes, know how to calculate γ_0 , γ_1 , γ_2 , ρ_1 , and ρ_2 from ϕ_1 , ϕ_2 , θ_1 , and θ_2 . For an MA(2) process:

 $\begin{aligned} \gamma_0 &= (1 + \theta_1^2 + \theta_2^2) \times \sigma^2 \\ \gamma_1 &= (-\theta_1 + \theta_1 \times \theta_2) \times \sigma^2 \\ \gamma_2 &= (-\theta_2) \times \sigma^2 \end{aligned}$ $\rho_1 &= (-\theta_1 + \theta_1 \times \theta_2) / (1 + \theta_1^2 + \theta_2^2) \end{aligned}$

 $\begin{aligned} \rho_2 &= (-\theta_2) \ / \ (1 \ + \ \theta_1^{\ 2} \ + \ \theta_2^{\ 2}) \\ \rho_k &= 0 \ \text{for} \ k \ = \ 3, \ 4, \ \ldots \end{aligned}$

See Cryer and Chan, page 63 (equation 4.2.3)

**Exercise 5.2: Variance and autocorrelations of moving average process

A moving average process of order 2 is $Y_t = e_t - 0.6 e_{t-1} - e_{t-2}$, with $\sigma_e^2 = 1$

- A. What is γ_0 , the variance of Y_t ?
- B. What is γ_1 , the autocovariance of lag 1?
- C. What is γ_2 , the autocovariance of lag 2?
- D. What is ρ_1 , the autocorrelation of lag 1?
- E. What is ρ_2 , the autocorrelation of lag 2?

Part A: $\gamma_0 = (1 + \theta_1^2 + \theta_2^2) \times \sigma_{\epsilon}^2 = (1 + 0.6^2 + 1^2) \times 1 = 2.36$

Intuition: Yt is the sum of three independent random variables, with variances of 1, 0.36, and 1.

See Cryer and Chan, chapter 4, page 62, equation at the bottom of the page.

Part B: The autocovariance of lag 1 is $-\theta_1 \times (1 - \theta_2) = +0.6 \times (1 - 1) = 0$.

Part C: The autocovariance of lag 2 is $-\theta_2 = -1$.

Part D: See Cryer and Chan, chapter 4, page 63, equation 4.2.3.

$$\rho_1 = \frac{-\theta_1(1-\theta_2)}{1+\theta_1^2+\theta_2^2} \qquad \rho_1 = \frac{-\theta_1+\theta_1\theta_2}{1+\theta_1^2+\theta_2^2}$$

 $(-0.6 + 0.6 \times 1) / (1 + 0.6^{2} + 1^{2}) = 0/2.36$

 ρ_1 is the correlation of $e_t-0.6~e_{t\text{--}1}-e_{t\text{--}2}$ with $e_{t\text{--}1}-0.6~e_{t\text{--}2}-e_{t\text{--}3}$

- The numerator has two non-zero terms: -0.6 e²_{t-1} and +0.6 e²_{t-2}
- The error terms have the same variance, so these two terms cancel out.

Jacob: Does $\rho_2 = 0$ mean that the sample autocorrelation of lag 1 in this time series is zero?

Rachel: Actual time series are finite, so sample autocorrelations have random fluctuations. If the time series has 100 observations, the sample autocorrelation r_1 is distributed as a normal random variable with a mean of zero and a standard error of $1/\sqrt{100} = 0.10$. The observed autocorrelation is not zero. But if the time series is infinite, the sample autocorrelation of lag 2 approaches zero. This exercise assumes the moving average parameters are known and asks about the true autocorrelations.

Jacob: How should we think of this? Can one see the correlation intuitively?

Rachel: e_t is correlated with e_{t-1} two ways:

- Directly, with a correlation of $-\theta_1$.
- Indirectly through e_{t-2} and back to e_{t-1} , with a correlation of $-\theta_2 \times -\theta_1$.

Moving from e_{t-1} to e_{t-2} is like moving from e_{t-2} to e_{t-1} . We deal with these relations in more detail in modules 19 and 20 (seasonal time series), where $\rho_{11} = \rho_{13}$.

Part E: See Cryer and Chan, chapter 4, page 63, equation 4.2.3

$$\rho_2 = \frac{-\theta_2}{1+\theta_1^2+\theta_2^2}$$

 $(-1) / (1 + 0.6^{2} + 1^{2}) = -1/2.36 = -0.424$

Intuition: ρ_2 is the correlation of $e_t - 0.6 \; e_{t\text{-}1} - e_{t\text{-}2}$ with $e_{t\text{-}2} - 0.6 \; e_{t\text{-}3} - e_{t\text{-}4}$

- The numerator has one non-zero term: –1 × $e^2_{t\text{-}2}$ The denominator is the variance γ_0 •
- •