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NEAS Time Series Project

Introduction

I was curious about the trend in accidental deaths in the United States, since more people every year and leaving traditional blue collar construction and assembly line jobs and moving to relatively safer white collar jobs. I also expected to see evidences of seasonality in the data, since construction is a very cyclical industry (peaking in the summer) with a high rate of accidental death. Additionally, there are most likely more accidental deaths due to recreation in the summer.
Data

I obtained data from http://robjhyndman.com/TSDL/demography/ to complete this analysis. The extract of data I used is named Deaths.dat and can be found on the [Data] tab of the attached excel spreadsheet. The data set is the number of accidental deaths by month in the United States from January, 1973 to January, 1978 – 72 data points. This is not enough data to conclusively examine the long term trend of accidental death rates, but this should allow me to examine the seasonality and stationarity of the data and examine whether the data was generated by a white-noise process or can be modeled by a Yule Walker equation.
Below is a graph of the original data. The data shows clear evidence of seasonality, which would confirm my original idea that accidental deaths would increase in the summer months. The data also is fairly steady in number for the years of 1973-1978, showing little evidence of a decrease in the yearly number of accidental deaths in the US.
[image: image1.emf]Accidental Deaths in US

0

2000

4000

6000

8000

10000

12000

1 4 7 10 13161922 2528313437 4043464952 5558616467 70

Monthly Deaths


Analysis

Bartlett’s Test for White Noise Process

To ensure the data is not generated by a white noise process, I used Bartlett’s test. Bartlett’s Test holds that if the data is generated by a white noise process, then the sample autocorrelations will be normally distributed with mean 0 and standard deviation of 1/square root(T), where T is the number of observations in the data set. To show, at 95% significance, that this series was not generated by a white noise process, there should be sample autocorrelations greater than z 0.95 * 1/square root (T) =  1.96 * 1/(72 ^ ½) = 0.2310. As seen in the graph below, there are many sample autocorrelations greater than 0.2310, so it can be stated with 95% confidence that this series was not generated by a white noise process.
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Stationarity
A stationary series should be unchanging over time – as in, the mean and variance should not be approximately equal at all points of the series. Since I believe this series to vary by seasonality, I compared the mean and variance by year (12 monthly points of data), which can be found on the [Data] tab and seen below.
	Year
	Sample
Mean
	Sample
Variance

	1973
	9,652
	902,178

	1974
	8,719
	772,031

	1975
	8,586
	733,379

	1976
	8,397
	564,963

	1977
	8,577
	892,259

	1978
	8,797
	983,655


There does not appear to be a consistent mean and variance over time, although the variation seen is not consistent or that significant. Additionally, the autocorrelations should decrease quickly as the lag increases – the autocorrelation does decrease to zero eventually, but does not substantially approach zero until lag 64. It may be worth taking first differences to see if this improves stationarity.
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From the graph above, which can be found in the [1st differences] tab, it is clear that the autocorrelations of first differences do not approach zero substantially quicker than the original series. Originally, using Bartlett’s test on the sample autocorrelations of 1st differences shows that these are not produced by a white noise process which means that taking 1st differences was incorrect.

There is a statement in the Time Series text that the absolute value of autocorrelation at all lags is less than one, this is sufficient to assume the series is stationary. So, I will use that condition to justify the assumption that the original time series is stationary.

Seasonality

Since the data exhibits an obvious twelve-month pattern, I will use the method suggested in the text for removing annual seasonality. By beginning with the January, 1974 data and subtracting the data from one year prior I can create a 12-month lagged series with seasonality eliminated [yt – yt-12]. The 60 points of data and the series’ sample autocorrelations are graphed below, and this calculation as well as the graphs can be found in the [Seasonality] tab of my worksheet.
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The obvious seasonality has been eliminated and the sample autocorrelations do decline to zero, so I will attempt to model this seasonally adjusted data with an AR or MA process.
Model Selection
A moving average process of order (q) has autocorrelations of a white noise process, so less than 1.96 * 1/(60 ^ ½) = 0.2530 for (q+1). There is also no spike in the sample autocorrelations, so we can conclude there is no moving average component in the series. Therefore I will examine autoregressive models of the first 3 orders.
	
	AR(1)
	AR(2)
	AR(3)

	R squared
	0.522641
	0.527158
	0.528678

	Adjusted R squared
	0.514267
	0.509963
	0.501999

	Sum of coefficients
	0.705029
	0.754287
	0.790131

	Durbin-Watson Stat
	2.380740
	2.097197
	1.998716

	Box-Pierce Q Stat
	27.635
	39.163
	40.478

	Chi-square (10%)
	72.158
	69.938
	67.696


The calculation of the R squared and adjusted R squared was done using excel’s regression add-in and can be seen on the [Regression] tab. Neither of the three models is a very good fit to the data as shown by their low R squared and adjusted R squared values. The sum of coefficients is less than one for all three models, which is a requirement for stationarity.

The Durbin-Watson statistic is a test of the correlation of the residuals. A value close to 2 indicates that the residuals are not either positively or negatively correlated. The residuals of the AR(1) model are slightly positively correlated, but not enough to cause alarm. The residuals of the AR(2) and AR(3) models show no signs of correlation.

The Box-Pierce Q Statistic has a Chi-square distribution with K-p-q degrees of freedom. The smaller the Q statistic is compared to the chi-square value at 10% significance, the better the model fit is.
Since all three models have comparable R squared and adjusted R squared values, they are all stationary, and their residuals are acceptably uncorrelated, it makes sense to use the AR(1) model since it has the lowest Box-Pierce Q Statistic. The model equation is:


AR (1): Yt = -24.684 + 0.705029Yt-1
To test the fit I will graph the fitted AR(1) model against the actual seasonally adjusted data.
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Conclusion
As shown in the graph above, the model does follow the pattern of the actual seasonally adjusted data, but does not achieve the required (somewhat) extreme changes from month-to-month. Overall I was disappointed with the lower-order AR models’ fit to the data, as shown by the low R square values discussed above. However, it appears my intuition related to the seasonality of accidental deaths was correct, and the decision to adjust for seasonality appears to have been the correct way to go to model this data. As stated above, my recommendation is to use the AR(1) model to fit the actual accidental deaths in the United States from 1972 to 1978.
