
Time Series Final Project

Temperature Data

xxxxx xxxx
First, I imported the data into R. The data I used was downloaded from NEAS forums. It included the date, high temperature, low temperature, and precipitation at a specific location.

> weathDat=read.csv(file="C:\\Users\\Bryan\\Documents\\ts hw\\station425752_data.csv",sep=",",header=F)

Then I checked for errors (when the temperature is unknown, it is recorded as -999).

> errors=weathDat[1:10000,2]==-999

> sum(errors)

[1] 56

I found a long period of time with a small number of errors. This was from 1949 to 1972. I reformatted the table so each day, month, and year was its own column, averaged the high and low as the temperature to analyze, and removed all data not between 1949 and 1972.

> month=as.numeric(substr(weathDat[,1],1,2))

> day=as.numeric(substr(weathDat[,1],4,5))

> year=as.numeric(substr(weathDat[,1],7,10))

> avg=(weathDat[,2]+weathDat[,3])/2

> weather=cbind(month,day,year,avg)[185:8950,]

I next had to remove the errors. There was one period of four consecutive errors and all other errors were alone. For the four consecutive errors, I simply made the replacement values increase linearly from the recorded value the day before to the day after the errors. All the individual errors, I replaced with the average of the previous day and the following day.

> weather[4728,4]=15+13.5/5

> weather[4729,4]=15+13.5*2/5

> weather[4730,4]=15+13.5*3/5

> weather[4731,4]=15+13.5*4/5

> for(i in 1:8766){

+ if(weather[i,4]==-999){weather[i,4]=(weather[i-1,4]+weather[i+1,4])/2}}

I considered removing the yearly mean from each temperature. Global warming may cause an increase in mean from year to year.

>yearAvg=numeric(24)

> for(i in 1:24){

+ yearAvg[i]=mean(weather[,4][weather[,3]==(i+1948)])}

> yearAvg

 [1] 45.16575 49.97808 48.98904 49.35314 49.90959 50.74658 48.43973 49.82240

 [9] 49.16575 51.21164 50.57260 50.08811 49.06301 48.60616 49.69863 47.95492

[17] 48.46849 50.23151 49.47808 49.46585 49.84110 49.05753 47.46164 49.14344

After looking at the means, there does not appear to be an upward trend in average temperature during this period. The mean was higher in 1950 than in 1972. I decided not to subtract yearly means.

Next I decided to subtract the daily mean from each day.

> weather2=weather

> for(i in 1:8766){

+ weather2[i,4]=weather[i,4]-mean(weather[,4][(weather[,1]==weather2[i,1])&(weather[,2]==weather2[i,2])])}

The new dataset weather2’s temperature entries are its temperature minus the mean temperature on that specific month and day over the course of the 24 year dataset. This is like removing the effects of seasons, but I’m using days instead. This causes the function to have a constant mean. It also means I don’t need to take first differences.

Next, I looked at the auto correlation function. The dying out of the autocorrelation is a strong indication that I should use an autoregressive model.

[image: image1.emf]0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag

ACF

Series weather2[, 4]

Next, I looked at the partial autocorrelation function.

[image: image2.emf]0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

Lag

Partial ACF

Series weather2[, 4]

At lags of 1 and 2, the partial ACF is extremely significant, while at 3, 4, and 5, it is barely significant. I also checked the PACF at lags near 365 (not pictured above) to see if temperature of a year ago had any effect, but it didn’t.

Next, I checked out the AIC’s of some various methods. AIC is a statistic used to measure the goodness of fit of a model. It rewards a model for having a greater likelihood and penalizes it for having more components. Based on the ACF’s, I figured there would be between 2 and 5 autoregressive components and I wasn’t really sure about the number of moving average components.

> mtx=mat.or.vec(6,8)

> for(i in 0:5){for(j in 0:7){

+ mtx[i+1,j+1]=arima(weather2[,4],order=c(i,0,j),include.mean=F)$aic}}

> mtx

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 58642.67 53387.94 51746.46 51147.90 50965.30 50855.46 50791.68 50752.69

[2,] 50776.33 50696.39 50695.16 50682.51 50666.95 50667.77 50666.40 50664.60

[3,] 50702.30 50696.66 50699.72 50697.54 50660.19 50670.82 50670.27 50662.34

[4,] 50691.31 50656.74 50658.52 50660.33 50660.56 50660.76 50662.55 50664.31

[5,] 50680.80 50658.47 50660.41 50661.64 50662.73 50663.31 50664.77 50666.23

[6,] 50673.18 50659.32 50662.18 50661.62 50664.26 50664.11 50666.01 50667.41

Here is a matrix of AIC’s. In this matrix, the row number indicates the autoregressive components and the column number indicates the moving average components. Note that the subscripts are off by one (as in [3,2] means arma(2,1)). This allowed me to include 0 components.

ARMA(3,1) had the lowest AIC. This was in the neighborhood I expected the model to be after looking at the ACF’s.

So I found the model.

> model=arima(weather2[,4],order=c(3,0,1),include.mean=F)

> model

Call:

arima(x = weather2[, 4], order = c(3, 0, 1), include.mean = F)

Coefficients:

 ar1 ar2 ar3 ma1

 1.7374 -0.8726 0.1168 -0.8979

s.e. 0.0320 0.0291 0.0108 0.0307

sigma^2 estimated as 18.91: log likelihood = -25323.37, aic = 50656.74

I looked at a qqplot of the residuals.

> qqnorm(model$residuals)

[image: image3.emf]-4 -2 0 2 4

-20

-10

0

10

Normal Q-Q Plot

Theoretical Quantiles

Sample Quantiles

This is clearly not a straight line. Given a small amount of data, I don’t think this would be strong evidence of the residuals not being normally distributed, but here there are thousands of residuals, so this is clearly not normal. However, these residuals are not all that far from normality. While it is clear that they aren’t quite normal, it is not clear that their difference from normality will have a strong negative effect on the tests.

I also did a Ljung-Box test for the residuals.

> Box.test(model$residuals,type="Ljung-Box",fitdf=4)

 Box-Ljung test

data: model$residuals

X-squared = 0.0034, df = -3, p-value = NA

This indicates that there is not a correlation between the residuals. This is a good thing.

Next I decided to look at the predictions.

> yhat=model$coef[1]*weather2[3:8765,4]+model$coef[2]*weather2[2:8764,4]+model$coef[3]*weather2[1:8763,4]+model$coef[4]*model$residuals[3:8765]

I could show a plot of how all the predicted values compared to the actual values, but there are so many, it would be impossible to see anything. Here is a plot of a random 100 points around the middle of the dataset.

> plot(weather2[5003:5103,4])

> lines(weather2[5003:5103,4])

> points(yhat[5000:5100],col=2)

> lines(yhat[5000:5100],col=2)

[image: image4.emf]0 20 40 60 80 100

-10

-5

0

5

10

Index

weather2[5003:5103, 4]

Here the black indicates actual points and the red indicates predictions. Recall that the actual and predictions here are for the temperature minus the mean on that day and month over the entire dataset.

 Overall, I think this model is a good fit and the best choice to model the data. To predict the weather on actual dates, I would take the predictions shown and then add back in the daily means.

