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NEAS VEE COURSE: TIME SERIES STUDENT PROJECT
INTRODUCTION
I chose to analyze tree ring data from my home state of California.  One of my family members runs a research reserve where graduate students can do studies of various plants and animals over a few-year period of time.  One of their longest-running studies is gathering data on the size of tree growth in native California oak trees by year, so I am interested in learning more about the historical tree growth in the state, as can be discerned in part by looking at the size of tree rings over various years.
DATA
The data I chose is from a particular tree cut down in California in 1987.  This data is from the Time Series Data Library [http://robjhyndman.com/TSDL/tree-rings/].  It has data from 1027 through 1987.  Tree ring size is influenced by weather and climate, as well as other environmental factors.  The most significant factors are usually considered to be temperature and water levels.  As such, analysis of this time series would be similar to analysis of rainfall levels over time, or temperature levels.
Since this data is from only one tree, it should be considered a small sample, despite having almost 1,000 years of history.  Since climate change affects various geographic areas differently, we should consider this tree to be a good example of climate effects in its area, but not for the entire state of California.  Still, any national or global climate change effects should be visible in the size of this tree’s rings over time.
Although we have 1,000 years of data available for this tree, we will consider only the last 200 years (1787-1987), since prior to this period the state was not very well populated, and I am most interested in the effects of population growth on climate change.  This period should provide more insight into the effects of the rapid population growth that occurred in California starting with the gold rush in the 1800s.
ANALYSIS WITH STATISTICAL TECHNIQUES
Initial Data Analysis
Below is a graph of the size of the tree’s rings over the past 200 years.
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Although there does appear to be an upward swing in the last 20 years, overall the data does not appear to have any general trends.  This means the time series is most likely stationary.  This is actually very interesting since I was expecting to see a drift due to climate change. Tree rings tend to be smaller during warmer periods, so I would have expected a downward drift over time.  We can look at the sample autocorrelation for a better analysis of the stationarity of the series.
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The number of data points is 200, so as long as the sample autocorrelation is between 1/(sq rt 200) = +/- 7.1%, we can say that this is effectively a sample autocorrelation of zero.  Although the sample autocorrelations are not always between -7% and +7%, they are in general between these values after lag 25 or so.  This indicates that the series is stationary, but most likely an ARIMA model with a large number of parameters.  Still, we can try some lower-order estimates to determine if a lower-order model provides a good enough fit.
First Differences and Logarithms
Given that the original time series does not seem to have a strong drift, we do not want to use first differences or logarithms.  First differences are good for data with an additive drift, and the first differences of logarithms are good for data with a multiplicative drift.  This data has no drift.  Making these transformations unnecessarily could introduce patterns into the data that do not actually exist in the source data.  Also, according to the principle of parsimony, we want to use the data with the least transformations possible.
Seasonality
If the data had any seasonality, we should see large spikes in the sample autocorrelation at certain lags.  For example, if the seasonality was in 20 year periods, we should see large sample autocorrelations at lags 20, 40, 60, etc.  This does not appear to be the case in the graph of the sample autocorrelations above.  This makes sense, since we are looking at annual data.  While we know daily/monthly weather has a seasonal pattern, weather year by year does not usually exhibit seasonality.  If there were any seasonality by year, it would most likely be over such a long period of time that our relatively short 200-year period would not be sufficient to capture it.  Again, since we prefer to use the simplest possible model to model our series, and since there is no support for seasonality based on the above chart, we will not analyze seasonality further.
White Noise
Since the sample autocorrelations do appear to be larger than the approximately 7% bounds that we have set to be approximately equal to “zero” autocorrelation for the first 25 lags or so, we conclude that this is not simply a white noise process.  A white noise process should have sample autocorrelations of approximately 0 at all lags.
Fitting an AR(1) Model
Given that the autocorrelation declines to 0, but only at approximately lags 25 and beyond, we could assume two scenarios.  

(1) This could be a Moving Average model with a large number of parameters, such as an MA(25).  For MA(n) models, the sample autocorrelation should decline to zero after lag n.  

(2) This could be an AutoRegressive model with a smaller number of parameters than 25.  Even an AR(1) model would tend to have significant sample autocorrelations at lags beyond 1.
Since we like to use the simplest model possible, we try the AR(1) model first.  We need to estimate d and Φ for the following formula:

Y(t) = d + Φ*Y(t-1)

Using Excel’s regression add-in (inputs are from columns M – O on the Data tab of the attached spreadsheet), we estimate the formula to be:

Y(t) = 0.426 + 0.587*Y(t-1)

Since the absolute value of phi1 = 0.587 is less than 1, the model is stationary.

The fitted model and the actual series are plotted below.  The fitted model appears to be a pretty good match to the original series, although there is definitely some room for improvement.
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While we can see by inspection that the fitted model seems to track with the original series fairly well, we would like to use more analytical methods to analyze the fit as well.  The main point of these tests will be to determine the goodness of fit by analyzing the residuals of the fitted model compared to the actual time series.  If the model is a good fit, the residuals should resemble a white noise process and thus have no autocorrelation.  The residuals are plotted below.  By inspection, they seem to be fairly random.  But we will use additional statistical tests as described below.
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We begin with the Box-Pierce Q Statistic.  Although we have 200 residuals, the first few residuals for even a white noise process tend to have some autocorrelation, and the later residuals are highly variable and thus not very useful for the analysis.  The Box-Pierce Q Statistic for 25 lags is only 0.21 and the Chi-Square 90% value is 34.382, so the probability that a white noise process has a Box-Pierce Q Statistic at least this high is almost 100%.  Thus we do not reject the null hypothesis that the residuals come from a white-noise process.  This means that the model could be a good fit for the original time series.
The adjusted R2 of the model, however, is only 0.34, which is fairly low.  This indicates that the AR(1) process is not actually a very good fit for the original time series data.
Fitting a Larger Order AR(n) Model
We try some more complicated AR models to see if we can increase the adjusted R2.

Note that ideally, we would check the partial autocorrelation function for this time series at all lags, to determine if an AR(n) model fits.  This is because the partial autocorrelation function should decline to zero after lag n for AR(n) models.  
The partial autocorrelation Φ11 can be estimated as the sample autocorrelation at lag 1, or r1, which is approximately 0.58 as indicated by the chart of sample autocorrelations above.

The partial autocorrelation Φ22 can be estimated as (r2 - r1 ^2) / (1 - r1 ^2) , which is approximately  (0.48 - 0.58^2)/(1 - 0.58^2) = 0.2270.

In practice, the sample partial autocorrelation for large lags is difficult to calculate, so we will not analyze the partial autocorrelations further here.  They do, however, seem to be decreasing faster than the sample autocorrelations.  But, given that both the partial autocorrelations at both 1 and 2 are significantly larger than 1/sqrt(200) = 7.1%, we can see that this is most likely an AR model with a parameter of at least 3.
We try fitting AR(2) and AR(3) models.  Using regression analysis, we get the following models:
AR(2):
Using Excel’s regression add-in (inputs are from columns M – P on the “Data – AR(2)” tab of the attached spreadsheet), we estimate the formula to be:

Y(t) = 0.315 + 0.438*Y(t-1) + 0.259*Y(t-2)

Since the sum of the absolute value of the phi coefficients is 0.438 + 0.259 = 0.697 is less than 1, the series is stationary.

The fitted model and the actual series are plotted below.  By inspection, the fitted model does not appear to be as good of a fit for the actual as the AR(1) model.  The residuals, however, do appear to follow a white noise process, again by inspection.
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AR(3):

Using Excel’s regression add-in (inputs are from columns M – Q on the “Data – AR(3)” tab of the attached spreadsheet), we estimate the formula to be:

Y(t) = 0.253 + 0.410*Y(t-1) + 0.207*Y(t-2) + 0.141*Y(t-3)

Since the sum of the absolute value of the phi coefficients is 0.410 + 0.207 + 0.141 = 0.758 is less than 1, the series is stationary.

The fitted model and the actual series are plotted below.  By inspection, the fitted model does not appear to be as good of a fit for the actual as the AR(1) or AR(2) models.  The residuals do appear to follow a white noise process, however, again by inspection.
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The table below summarizes the relevant statistics for each of the three models reviewed.

[image: image9.emf]Model

Adjusted R2

Box-Pierce Q Statistic Chi-Square Statistic Chi-Square P

AR(1) 0.338 0.205 34.382 100%

AR(2) 0.375 0.522 34.382 100%

AR(3) 0.395 4.459 34.382 100%


We make the following observations:

(1) By inspection of the graphs of the fitted models above, the AR(1) model appears to be the best fit.  But, the residuals for all three fitted models appear to be from a white noise process, by inspection of the graphs.

(2) All three fitted models are most likely stationary since the sum of the absolute value of the phi coefficients is less than 1.

(3) The adjusted R2 gets slightly better as we add parameters to the AR model, indicating that the AR(3) model is the best fit.
(4) The Box-Pierce Q statistic gets higher as we add parameters, indicating that the AR(1) model is the best fit.  For all three models, however, we cannot reject the null hypothesis that the residuals are from a white noise process, which means that all three models could be a good fit for the original series, according to the Box-Pierce Q statistic.

CONCLUSION
We tested three different autoregressive models to fit to the original time series of 200 years of tree ring data.  The statistical tests that we use are inconclusive.  Although the Box-Pierce Q statistic indicates that we should not reject the null hypothesis that the residuals of each of the fitted models are from a white noise process, we see that the adjusted R2 is fairly low for each of the models, indicating that they may not be a good fit.  Overall, since tree rings are affected by so many exogenous factors such as water levels, temperature levels, pollution levels, etc. it is not surprising that we cannot find a simple autoregressive model with a small number of parameters to model this series with accuracy.  It is surprising to me, however, that we do not seem to see any drift indicating smaller tree rings over time, which would support climate change / increasing temperatures.
