What influences the regional development in Taiwan?

Motivation

I was born in Nantou County, a beautiful place with comfortable environment. I am proud of my hometown; however, sometimes I feel worried about her poverty and her being left-behind.

Due to the anxiety, I would like to find out the factors that influence the regional development. Moreover, a regression model is given in order to check if those factors are able to make a satisfactory explanation.

Analysis Process *Stage1: Identifying structure through data summarization and data reduction*

The data is included of eight indices, which respectively refer to:

X1: The ratio of people aged 15 and over receiving advanced education (%) (college and over)

- X2: The ratio of literate people aged 15 and over (%)
- X3: Average expenditure on public safety (\$ per capita)
- X4: The clearance rate of criminal cases (%)
- X5: Road density (km / km^2)
- X6: Number of telephone subscribers per thousand population
- X7: Density of suspended particulate (micrograms $/m^3$)
- X8: The ratio of well-disposed refuse (%)

U U								
	X1	X2	X3	X4	X5	X6	X7	X8
Taipei County	25.82	97.22	2113.9	39.86	1.16	651.81	77.94	98.25
Yilan County	16.56	94.71	3459.1	70.66	0.71	450.79	66.25	74.37
Taoyuan County	22.87	96.44	2205.1	55.89	1.74	571.72	96	85.45
Hsinchu County	23.39	96.97	2684.4	68.51	0.75	463.39	63.26	90.24
Miaoli County	16.48	96.98	2804.1	72.53	0.87	437.21	75.6	96.31
Taichung County	20.5	95.68	2027.5	77.39	1.26	459.86	97.46	97.48
Chunghwa County	17.3	92.53	2408.6	72.31	1.93	434.72	94.45	99.63
Nantou County	17.9	95.73	3404.8	68.47	0.52	450.78	69.83	94.71
Yunlin County	15.32	91.84	2626.7	60.83	1.71	399.86	116.3	90.64
Chiayi County	13.87	92.64	3075.6	71.92	1.08	295.31	93.44	93.43
Tainan County	19.08	94.93	2625.5	57.79	1.5	299.1	88.08	95.84
Kaohsiung County	18.48	94.28	2444.7	55.06	0.99	433.53	138.85	99.8
Pingtong County	17.55	94.36	2907.6	56.85	0.82	388.72	94.01	96.83
Taitung County	9.69	96.01	5752.2	76.58	0.37	404.01	57.62	83.95
Hualien County	17.69	97.6	4762.4	59.77	0.3	457.24	61.15	88.97
Penghu County	21.62	96.83	12570	87.2	2.01	443.16	66.9	98.7
Keelung City	22.63	95.87	3853.3	73.01	2.38	549.01	114.8	100
Hsinchu City	31.59	96.72	3052.3	63.86	3.74	733.62	67.17	100
Taichung City	38.45	98.14	2775.9	49.85	8.52	845.08	87.73	100
Chiayi City	37.07	96.1	4001.4	45.02	8.31	783.28	113.39	100
Tainan City	32.84	96.77	3073.7	47.94	6.65	873.02	101.89	99.99
Taipei City	47.61	97.99	5005.2	73.57	4.64	890.71	83.4	100
Kaohsiung City	31.93	97.11	3899.7	52.63	10.1	638.13	141.92	100

The original data:

The correlation matrix:

	X1	X2	Х3	X4	X5	Хб	X7	X8
Xl	1							
X2	0.598	1						
Х3	0.026	0.251	1					
X4	-0.373	-0.160	0.491	1				
X5	0.782	0.376	0.019	-0.470	1			
X6	0.921	0.624	-0.025	-0.442	0.757	1		
X7	0.192	-0.309	-0.292	-0.400	0.473	0.128	1	
X8	0.515	0.174	0.024	-0.216	0.481	0.412	0.438	1

From the matrix, we find that several variables are highly interrelated (correlation coefficient ≥ 0.6).

The pairs are (X1, X2), (X1, X5), (X1, X6), (X2, X6), and (X5, X6) There may be the problem of multicollinearity, so it is reasonable to employ the factor analysis to do the data reduction in this case.

Scree Plot of X1-X8

Since $\lambda 1 = 3.68880829$, $\lambda 2 = 1.85002757$, $\lambda 3 = 1.08401443$, by the latent root criterion (eigenvalue > 1) we extract three common factors. And from the cumulative percent of variance, we find that the explanatory power to the variance reaches to 0.828, which is satisfactory to us.

Variable	Factorl	Factor2	Factor3	Communality
X1	-0.924	0.218	0.014	0.901
X2	-0.562	0.656	0.286	0.828
Х3	0.087	0.725	-0.541	0.825
X4	0.591	0.490	-0.446	0.788
X5	-0.888	-0.049	-0.150	0.813
X6	-0.909	0.222	0.165	0.903
X7	-0.400	-0.732	-0.414	0.867

The unrotated factor matrix is:

X8	-0.623	-0.135	-0.538	0.697
110	0.010	01200	0.000	0.05

After examining the unrotated loadings, we find that there are merely two factors retained, which differs from our initial extraction. Owing to the contradiction, we need a factor matrix rotation. The VARIMAX rotation is applied here. The VARIMAX rotated factor matrix is:

Variable	Factorl	Factor2	Factor3	Communality
Xl	0.887	0.332	0.066	0.901
X2	0.859	-0.256	-0.158	0.828
Х3	0.149	-0.010	-0.896	0.825
X4	-0.366	-0.209	-0.782	0.788
X5	0.688	0.564	0.144	0.813
X6	0.912	0.214	0.158	0.903
X7	-0.117	0.854	0.353	0.867
X8	0.332	0.758	-0.108	0.697

Variance Explained by Each Factor						
	Factor 1 Factor 2 Factor 3					
Before rotation	3.6888083	1.8500276	1.0840144			
After rotation	3.1102998	1.8883292	1.6242213			

The above two tables show that the problem of inconsistency is solved after rotation. Next we are going to name these factors and interpret them.

Stage2: Interpreting the factors

	Factor1	Factor2	Factor3
	The ratio of people aged 15		
	and over receiving advanced		
	education	Density of suspended	Average expenditure on
		particulate	public safety
	The ratio of literate people		
Variables	aged 15 and over	The ratio of well-disposed	The clearance rate of
		refuse	criminal cases
	Road density		
	Number of subscribers per		
	thousand population		

Relations among Variables	The first two variables refer to the education level, while the rest two refer to the level of infrastructure.	That the county is able to dispose all kinds of waste better than others means that it reaches to a relatively high degree of industrialization. And a higher density of suspended particulate reflects a higher degree of	These two factors are both about public safety.
Factor	Government Expenditure	Degree of Industrialization	Public Safety
Name			

(Table 1)

Regression Model

To see if these extracted factors really have influence on regional development, we are going to fit a regression model. Intuitively, people living in the better-developed places will have higher income level. From the viewpoint, we choose the average income per capita as the regressand and the factor scores as the regressors to fit a regression model.

The regression model is

Y = $\beta 0 + \beta 1 Z_1 + \beta 2 Z_2 + \beta 3Z_3$, where

Y = the average income per capita

 $Z_1 = score of factor 1$, $Z_2 = score of factor 2$, $Z_3 = score of factor 3$

The software output suggests that there is one outlier and one influential case,

which lead a contradiction to our basic assumptions.

Unusual Observations

0bs	C2	C1	Fit	SE Fit	Residual	St Resid
16	0.15	203920	221262	22646	-17343	-1.16 X
22	1.86	357214	277220	13518	79994	3.40 R

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large influence.

Observation 16 is Penghu County and observation 22 is Taipei City.

Penghu is an isle out of Taiwan, and Taipei is the capital holding the most abundant resource. It is of no doubt that these two cases will bring some distortion to our model. Excluding them and repeating the process, we find there is still an outlier, Hsinchu City.

Unusual Observations

Obs	C2	C1	Fit	SE Fit	Residual	St Resid
17	0.98	278438	234093	6846	44345	2.73R

R denotes an observation with a large standardized residual Industrial Park attracts lots of companies, factories and people to move into Hsinchu, and therefore it also gathers much resource, which again results in a distortion to our model.

With the three places left unconsidered, all the assumptions are satisfied.

By stepwise regression, we have Stepwise Regression: Y versus Z1, Z2, Z3

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Y on 3 predictors, with N = 20

Step	1	2
Constant	215903	211295
Z1	19581	16371
T-Value	5.12	4.81
P-Value	0.000	0.000
Z3	-	-17113
T-Value		-2.89
P-Value		0.010
R-Sq(adj)	57.08	69.50
C-p	8.3	2.3

And the output is:

```
The regression equation is
```

Y = 211295 +	16371 Z1 -	17113 Z3		
Predictor	Coef	SE Coef	Т	P
Constant	211295	3412	61.92	0.000
Z1	16371	3407	4.81	0.000
Z3	-17113	5928	-2.89	0.010
R-Sq = 72.7%	R-Sq(ad)	j) = 69.5%		

The R-square is 0.695, which is an acceptable explanatory power; unfortunately, factor2 is expelled. The problem is probably resulted from the selection of the regressand. If we could have a more adequate response variable, we may have a result that matches our expectation.

Conclusion

As Table 1 shows, three common factors can be extracted from the original eight indices. The factors that influence regional development are Government Expenditure, Degree of Industrialization, and Public Safety. This matches the real situation. And the result also tells us that the government plays the most important role in regional development. If the government budget is able to be allocated more fare and unbiasedly, the difference of development among regions will be reduced.