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INTRODUCTION


As a woman, the decision on whether to have children is a highly personal matter.  Especially in this day and age, a woman has so many career choices that she can make; being a mother does not appear to be as definitive a part of a woman’s life as it once was.  Being a woman that chose motherhood and to pursue a career and the implications associated with those decisions, it of interest to me to examine birth rates within the United States. 
DATA

Data was collected from two sources: http://www.bea.gov and http://www.infoplease.com.
REGRESSION 
It has been found that there is a relation between the prior year GDP and the current year birth rate; therefore it is beneficial to utilize a series of GDP growth rates as the explanatory variable for birth rates.  The GDP growth rate data has been transformed by first taking the logarithm and then the first difference.  
Explanatory Variable X = 1 year lagged GDP growth rate

Response Variable Y = Absolute Birth Rates in the US

The regression of Y on X variable was completed using Microsoft Excel’s Regression add-in.
	Regression Statistics
	
	
	
	

	Multiple R
	0.212847
	
	
	
	

	R Square
	0.045304
	
	
	
	

	Adjusted R Square
	0.027946
	
	
	
	

	Standard Error
	3.771209
	
	
	
	

	Observations
	57
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	1
	37.11879
	37.11879
	2.609952
	0.111918

	Residual
	55
	782.211
	14.22202
	
	

	Total
	56
	819.3298
	 
	 
	 

	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	 

	Intercept
	17.36188
	0.6127
	28.33668
	1.71E-34
	

	X Variable 1
	15.90028
	9.842115
	1.615535
	0.111918
	 


The resulting model is: Y = 17.36188 + 15.90228 X.  The Regression model is then utilized to generate a series of Birth Rate Residuals.
RESIDUALS
By graphing the Birth Rate Residuals with the Absolute Birth Rates we can compare the characteristics of the two series of data.   
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If the graph generated by the residuals appeared “smoother” we would then fit an ARIMA process to the residuals.  The residuals do not appear smoother so we will continue working with the absolute birth rates
ARIMA MODELING
Various techniques will be utilized in an effort to discern which ARMA model will best suited.
Correlogram of Absolute Birth Rates:
[image: image2.png]Correlogram of Absolute Birth Rates
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The visual provided by the graph shows the behavior of the autocorrelation function.  The positive sample autocorrelation function values at lags 1-10 reflect the strength of the lagged relationships; above zero the decay appears more linearly then exponentially, then the sample ACF goes negative at lag 15 and remains so for many lags.  The values tail off in lieu of cutting off after the initial value, this suggests we examine models AR(p) or ARMA (p,q) where p>0 and q>0.  In addition, the strong lagged relationship at the earlier lags suggests a high 
[image: image3.wmf]j
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Lag 2 Partial Autocorrelation:
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The partial autocorrelation function will tail off for an MA(q) or ARMA (p,q) process while for the AR (p) model it cuts off after the lag exceeds the order of the process.  Φ22 = 0 for all k>1; thus the partial autocorrelation is nonzero for lag 1, the order of the AR (1) process but is zero for all lags greater than 1.  The partial autocorrelation function for an AR(p) process therefore further suggests AR(1) as our model.
Time Plot of Series:
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The time plot of the series of absolute birth rates shows that there is a lot of inertia in the series, the data points remain on the same side of the mean for extended periods.  
Plot of Yt vs. Yt-1:

[image: image5.png]Plot Yt vs. Yt-1





The plot of Yt vs. Yt-1 shows the data points moving in a slight upward trend from left to right; this pattern indicative of an AR process that has a strong autocorrelation at lag 1.
Plot of Yt vs. Yt-2:
[image: image6.png]



The plot of Yt vs. Yt-2 shows the data points moving in a slight upward trend from left to right; this pattern indicative of an AR process that also has a strong autocorrelation at lag 2.
MODEL TESTING
Using the residuals of ARIMA fitting for an AR(1) model and AR(2) model; we will examine the Box-Pierce Q Test Statistic to see whether we must reject the models.
AR(1) model for absolute birth rates:
[image: image10.wmf]t

t

t

Y

Y

e

j

+

=

-

1

1


[image: image11.wmf]6

0.94599550

1

1

=

=

r

j


[image: image12.wmf]t

t

t

Y

Y

e

+

=

-

1

)

945995

.

0

(


AR(2) model for absolute birth rates:
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The models for AR(1) and AR(2) were used to generate fitted values for each data set; the model residuals are then used to calculate the Box-Pierce Q statistic and an appropriate Chi-Square Critical Value.  If the observed value of Q exceeds the chi-square statistic then we can reject the model.

	Model
	Q
	X2
	Results

	AR(1)
	52.60042
	60.0023139
	cannot reject

	AR(2)
	167.004438
	60.0017547
	reject


CONCLUSION
In examining the prominent evidence provided by the Correlogram and Lag 2 Partial Autocorrelation, in addition to the results provided by the Box-Pierce test it is clear that an AR(1) model might be a good fit for modeling US annual birth rates.
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