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Introduction

I decided to analyze the times series of numbers of fatally injured in motor vehicle crashes on highways for my time series project.  I’ve always been interested in looking at this data.  As technology improves, so do the safety measures of the vehicles.  At the same time, technology also improves the efficiencies of the vehicles, making them faster and lighter.
I obtained the data from the U.S. Department of Transportation’s website:  http://www.fhwa.dot.gov/policyinformation/statistics/2009/fi210.cfm.
I will attempt to find a model to use to predict the future of deaths on highways.
Results

I graphed the total number of fatally injured vs. year of occurrence.  The data was obtained from the U.S. DOT’s website. Overall, the numbers of fatally injured are declining; however, there seems to be some peaks and valleys over the time period of 1969 to 2009.
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There were declines in 1974, 1982, and 1992.  I looked into why there were severe drops in those time periods.  There may be a number of factors which could cause a decline in people’s driving habits.  In 1974, the oil crisis, the national 55 mph speed limit, and depressed economic conditions disrupted the nation's driving habits.  Highway deaths dropped nearly 11 percent from 1981 to 1982 as President Ronald Reagan battled a recession.  The slow-down in the economy from 1990 to 1992 may have contributed to the reduction in total fatalities in that time period. It has been suggested that while per capita alcohol consumption may not be greatly affected by a recession, more people may drink at home rather than going out, thereby reducing impaired driving.  
Despite the occasional random downturn in economy, there seems to be a general trend that the number of fatalities is decreasing.

To test for randomness in the time series, I will use a correlogram (autocorrelation plot) to test for this.  The plotting of the autocorrelation plot, the autocorrelation plot of first differences and the autocorrelation plot of second differences are shown below.

Autocorrelation plot: The values are not close to zero.  The autocorrelation plot shows that the time series is not a stationary process and is not random. 
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Autocorrelation plot of first differences: The plots of the ACF for the first differences appear are close to zero and oscillate around zero.  This implies that it is a stationary process.
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Autocorrelation plot of second differences: 
[image: image4.emf]ACF of 2nd Differences
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It has been determined that the model is a stationary process so I will attempt to fit an ARIMA (Autoregressive Moving Average Model [ARIMA(p,q,0)].  Ideally, the lowest p and q model will provide the simplest model; however, I will have to see if the model fits the time series well.  ARIMA (1,1,0) and ARIMA (2,1,0) models will be considered. Below I have provided a graph of the original data and the ARIMA (1,1,0) and ARIMA (2,1,0) models.

[image: image5.emf]Actual vs. Forecasted Fatal Injuries (1967 - 2009)

30,000

35,000

40,000

45,000

50,000

55,000

60,000

1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

Actual

ARIMA(1,1,0)

ARIMA(2,1,0)


AR(1) appears to be a better fit than AR(2) graphically.  However, we need to look at the Adjusted R Square, and the Durbin-Watson Statistic to determine which model to use.
	
	ARIMA (1,1,0) Model
	ARIMA (2,1,0) Model

	Adjusted R-Square
	0.818834
	0.832447

	Box-Pierce Q
	40.72124
	15.36130

	Chi-Squared (10%)
	49.51258
	48.36341

	Durbin-Watson Statistic
	1.32656
	1.93520


The Adjusted R-Square statistic defines how well the fit of the model is and measures how well a regression line models the actual data. The ideal Adjusted R-Square is 1.  The ARIMA (2,1,0) model has a value that is closer to 1 than ARIMA(1,1,0)
The Box-Pierce Q statistic determines whether or not the residuals probably form a white noise process. The null hypothesis that the residuals are a white noise process cannot be rejected if the Q statistic is lower than the critical Chi-Squared value. At the ten percent significance level, we can see that we would not reject either of the AR models, according to the Box-Pierce test.
The Durbin-Watson statistic is used to determine whether or not the residuals are correlated. A Durbin-Watson statistic of 2 indicates no serial correlation of residuals. According to the Durbin-Watson test, the ARIMA (2,1,0) model does not show significant serial correlation among residuals, since its statistics is close to 2.
Conclusion

Examining the results from the Adjusted R-Square and the Durbin-Watson Statistic, it’s obvious that the AR(2) model fits better than the AR(1) model.  The AR(2) graph may not look as good as the AR(1) graph, but it is a better model in predicting the future results than AR(1) model.

There may be a better model that exists for the time series; however, for simplicity sakes, the AR(2) model produces an acceptable result.
