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Introduction:

Every night there is a plethora of different television shows to tune into. One of the popular genres recently has been police television drama which typically has a storyline that revolves around solving homicides. These police dramas seem to suggest that homicides occur often and are increasing in frequency in today’s age.  This project looks at the true homicide rate in the United States and how it has changed over time. The ultimate goal of this project is to identify an ARIMA model that accurately models the homicide rate and can be used for forecasting purposes.

Data:

The time series analysis will be based on United States homicide rates from 1900 – 2006. Homicide rates from 1900-1999 will be used to construct the model and rates from 2000-2006 will be used to check the fit of the model. Deaths associated with the September 11 terrorist attack are reflected in the 2001 rate. The on-line source of this information is http://bjs.ojp.usdoj.gov/content/glance/hmrt.cfm. The data can also be found on the ‘Raw Data’ tab in the Excel workbook. Parameters for autoregressive time series models will be calculated using Microsoft’s Excel Regression Add-In. Yule-Walker equations will be used to determine the parameters for the moving average time series models. Parameter calculations as well as other model information such as the Durbin-Watson statistic can be found in the Excel workbook. There is a separate tab for each time series model analyzed (e.g. all information for an ARIMA(1,1,0) model is on the ‘ARIMA(1,1,0)’ tab in the Excel workbook).
Model Specification:

The chart below shows the United States homicide rate from 1900 through 1999. Over this time frame, the homicide rate has fluctuated greatly. There are periods where the homicide rate increases as well as periods where the homicide rate decreases. An important element to consider when fitting an ARIMA model to a time series is whether or not the data is stationary. Certain techniques such as differencing may be necessary if the data is found to be non-stationary. [image: image1.png]United States Homicide Rate 1900-1999
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To determine whether the United States homicide rates from 1900 through 1999 form a stationary series, a correlogram, which plots the sample autocorrelation against time lags, will be examined. For stationary series, the sample autocorrelation decreases quickly to zero and then oscillates at or near zero as the lag increases. Shown below is the correlogram for the U.S. homicide rate time series. [image: image2.png]Correlogram of Homicide Rate Time Series
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As is evident in the correlogram, the sample autocorrelation drops quickly to zero (at roughly lag 15). However, after the initial drop-off, the sample autocorrelation does not oscillate near zero but rather decreases for several more lags before increasing back to zero at approximately lag 39. After lag 39, the sample autocorrelation again increases for several lags before decreasing back to zero at roughly lag 65. Based on this pattern, it is clear that the data is not stationary. In an effort to create a stationary series, differencing will be used. Shown below are the first and second differences of the U.S homicide rates. 
[image: image3.png]First Difference
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Differencing clearly removes much of the trend fluctuation as there are significantly fewer periods of increasing and decreasing evident in the above graphs. As with the original data, correlograms will be examined to determine if the differenced data is stationary. To avoid over-differencing the data, the correlogram for the first difference will be considered first. The second difference data will only be analyzed if the first difference data is found to be non-stationary. Given below is the correlogram for the first difference data.  [image: image5.png]Sample Autocorrelation
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From the correlogram for the first difference, it is clear that the sample autocorrelation drops quickly to zero and then oscillates near zero as the lag increases. This pattern suggests that the first difference is a stationary series. In addition to the correlogram, Bartlett’s test as well as the Box-Pierce Q statistic will be calculated to determine if the series is a stationary process. As shown by M.S. Bartlett, the approximate standard deviation of a white noise process (which is a stationary process) is[image: image7.png]


 where n is the number of observations. The red lines in the above correlogram indicate the approximate upper and lower 95% confidence levels for a white noise process as determined by[image: image9.png]+1.96 -



. For one hundred data points, it is expected that roughly five sample autocorrelation fall outside of the 95% confidence level. For the first difference, there are seven points that fall outside the 95% confidence level; however, two of those points are roughly at the confidence level. This test seems to suggest that the first difference is a stationary series. The Box-Pierce Q statistic also tests whether the series is a white noise process. If the Q statistic at a given lag is below the critical Chi[image: image11.png]


 value then the null hypothesis that the residuals are white noise is not rejected. For the first difference, the Q statistic at lag 90 is 89.84. This value is lower than the Chi[image: image13.png]


 value at 10% which is 106.47. Based on these results, the first difference is a stationary process and can be used for modeling.
The first difference correlogram is also useful in determining which ARIMA models to test. The autocorrelation for autoregressive models typically decays exponentially to zero as the lag increases. For moving-average models, the autocorrelation is non-zero for one or more lags and then drops down to zero. The sample autocorrelations for the first difference appears to drop off slowly to zero, which suggests an autoregressive model. An argument could be made, though, that the sample autocorrelation is non-zero for lag one and zero for higher lags suggesting a moving-average model of order 1. To cover both possibilities, the following ARIMA models will be constructed and evaluated: ARIMA(1,1,0), ARIMA(2,1,0), ARIMA(3,1,0), and ARIMA(0,1,1).
Model Fitting: 
ARIMA(1,1,0)

This model satisfies the equation Yt - Yt-1 = φ(Yt-1 - Yt-2) + θ0 + εt where εt is white noise with mean 0. Using Microsoft’s Excel Regression Add-In and setting Yt - Yt-1 as the y-variable and Yt-1 - Yt-2 as the x-variable, produces the following results.
	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	0.030451818
	0.050233623
	0.606203892
	0.545810136

	X Variable 1
	0.359950329
	0.096095324
	3.74576321
	0.000306825


This implies that reasonable estimates for φ and θ0 are 0.35995 and 0.03045, respectively. The mean of the model is calculated as [image: image15.png]i-e)



. Based on the estimated values of φ and θ0, the mean of the model is 0.0476. This is relatively close to the mean of the first difference data which is 0.0505. For the time series to be stationary, [image: image17.png]lol <1.
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 = 0.35995, the series is stationary. The final equation, which will be used to determine the fitted value of Yt, is Yt = 1.35995Yt-1 – 0.35995Yt-2 + 0.03045.
ARIMA(2,1,0)

This model satisfies the equation Yt - Yt-1 = φ1(Yt-1 - Yt-2) + φ2(Yt-2 - Yt-3) + θ0 + εt. Regressing Yt - Yt-1 on Yt-1 - Yt-2 and Yt-2 - Yt-3 produces the following results.
	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	0.028251257
	0.051153693
	0.552281873
	0.582066052

	X Variable 1
	0.340249225
	0.103365154
	3.291720763
	0.001403487

	X Variable 2
	0.057134255
	0.104221516
	0.548200195
	0.584854011


This gives estimates of 0.34025, 0.05713, and 0.02825 for φ1, φ2, and θ0, respectively. Based on these parameter values, the mean of the model, which is calculated as  [image: image21.png]C—e1-91)



 , is 0.0469. This is relatively close to the mean of the first difference data; however, the mean of the ARIMA(1,1,0) model is a closer fit to the actual mean. For this time series to be stationary the following three criteria need to be met: [image: image23.png]o2



 < 1, φ1 + φ2 < 1, and φ2 - φ1 < 1. Based on the parameter values given above, [image: image25.png]o2



 = 0.05713 < 1, φ1 + φ2 = 0.39738 < 1, and φ2 - φ1 = -0.28311 < 1. This implies that the series is stationary. The final equation for this model is Yt = 1.34025Yt-1 – 0.28311Yt-2 – 0.05713Yt-3 + 0.02825.
ARIMA(3,1,0)

	This model satisfies the equation Yt - Yt-1 = φ1(Yt-1 - Yt-2) + φ2(Yt-2 - Yt-3) + φ3(Yt-3 - Yt-4) + θ0 + εt. Regressing Yt - Yt-1 on Yt-1 - Yt-2, Yt-2 - Yt-3, and Yt-3 - Yt-4 produces the following results.

 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	0.030967914
	0.052171432
	0.5935799
	0.55424973

	X Variable 1
	0.341511773
	0.104538769
	3.266843263
	0.001529203

	X Variable 2
	0.066152219
	0.110490829
	0.598712308
	0.55083607

	X Variable 3
	-0.02918349
	0.105672968
	-0.276168
	0.783038465


This gives estimates of 0.34151, 0.06615, -0.02918, and 0.03097 for φ1, φ2, φ3, and θ0, respectively. Based on these parameter values, the mean of the model, which is calculated as  [image: image27.png]PEPY——



 , is 0.0498. Of the three autoregressive models fitted to the data, the ARIMA(3,1,0) model has a mean that is the closest to the mean of the first difference data. For this time series to be stationary it is necessary – however not sufficient - for the following criteria to be met: [image: image29.png]s



 < 1 and φ1 + φ2 + φ3 < 1. For this model, [image: image31.png]s



 = 0.02918 < 1 and φ1 + φ2 + φ3 = 0.37848 < 1. The final equation for the ARIMA(3,1,0) model is Yt = 1.34151Yt-1 – 0.27536Yt-2 – 0.09533Yt-3 + 0.02918Yt-4 + 0.03097.
ARIMA(0,1,1)

This model satisfies the equation Yt - Yt-1 = θ0 + εt - θεt-1. For this model θ0 is going to be set equal to the mean of the first difference and Yule-Walker equations are going to be used to determine an estimate for θ. Based on the Yule-Walker equations, [image: image33.png]py



= [image: image35.png]w60



 where [image: image37.png]py



is the autocorrelation function at lag one. The sample autocorrelation function at lag one, which is 0.35424, will be used as an estimate of[image: image39.png]Py



. Solving the above equation for θ gives -0.41535 and -2.40759. The value -0.41535 is the only one that makes the ARIMA(0,1,1) model invertible which is a required condition. The final equation for this model, therefore, is Yt = Yt-1 + 0.0505 + 0.41535 εt-1.
Model Diagnostics: 
As mentioned above, of the three autoregressive models, the ARIMA(3,1,0) model has a mean closest to the mean of the first difference data. Based on this result, the ARIMA(3,1,0) model is the autoregressive model that fits the data the best. The Durbin-Watson statistic as well as the Box-Pierce Q statistic, however, will also be looked at to determine which of the four ARIMA models best fits the data. The Durbin-Watson statistic is used to test for serial correlation between residuals. A value near two indicates little to no correlation. The Box-Pierce Q statistic is used to test whether residuals are white noise. If the Q statistic at a given lag is below the critical Chi[image: image41.png]


 value then the null hypothesis that the residuals are white noise is not rejected. The table below gives the Durbin-Watson statistic, the Box-Pierce Q statistic at lag 90, and the Chi[image: image43.png]


 value at 10% for each of the four ARIMA models .
	Model
	Durbin-Watson Statistic (DWS)
	Box Pierce Q Statistic - Lag 90
	Critical Chi-Squared

	ARIMA(1,1,0)
	2.033
	41.821
	106.469

	ARIMA(2,1,0)
	1.990
	41.481
	106.469

	ARIMA(3,1,0)
	1.986
	40.106
	106.469

	ARIMA(0,1,1)
	2.185
	49.212
	106.469


The Durbin-Watson statistic (DWS) for each of the ARIMA models is reasonably close to two. Of the four models, though, the ARIMA(2,1,0) model has a DWS value nearest to two. This suggests that the ARIMA(2,1,0) model is the best. Considering the Box-Pierce Q statistic at lag 90, all models have a value that is significantly below the Chi[image: image45.png]


 value at 10%. The ARIMA(3,1,0) model has the lowest Q statistics, so based on this statistic the ARIMA(3,1,0) model is the best. 
Shown below is a graph of the United States homicide rate from 2000 through 2006 as well as the fitted values for those years from the four ARIMA models. Although none of the models fit the data perfectly, and all fail to account for the large increase in 2001 and subsequent decrease in 2002, the ARIMA(3,1,0) model seems to fit the data the best.  
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Conclusion:
Taking into consideration the mean of the model, the Durbin-Watson statistic, and the Box-Pierce Q statistic results, the ARIMA(3,1,0) model fits the United States homicide rate data the best. This is also evident when comparing the 2000 through 2006 data to the fitted values. Although the ARIMA(3,1,0) model is regarded as the most appropriate model out of the four considered, it is likely not the best model possible. The ARIMA(3,1,0) model fails to account for significant changes in the homicide rate as is the case in 2001/2002. It would be ideal to consider more complex models if attempting to accurately predict future homicide rates. 
As a final comment, the homicide rate in recent years has been relatively low in comparison to the late 1970s – early 1990s.  So although television dramas seem to suggest an upward trend in homicides, the actual rate has been decreasing over the past few decades. 
