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Time Series – Fall 2010

Student Project
1. Introduction


Inspired by the successful marathon at the 1896 Olympics, the Boston Marathon is one of the oldest and most storied races in America. Each year, tens of thousands of professional and amateur athletes run the 26.2 mile course. Part of its appeal is its exclusivity: in contrast to most big-city marathons, participants of the Boston Marathon must qualify to enter.

In this paper I attempt to model the winning Men’s time for the Boston Marathon using time series models to see if winner times follow any identifiable process.

2. Data


I downloaded finishing times for each running of the marathon from the following website: http://www.hickoksports.com/history/bmarathon.shtml.  Despite changes in course length over time – and one year where it was run as a relay – I used all years of data in my analysis: perhaps these changes even fit into the underlying process that winning times follow!

3. Data Analysis
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It was first necessary to determine stationarity, which would allow the process to be modeled using fixed coefficients estimated from prior data. A simple glance at a graph of winning times indicates the presence of a decreasing trend in times. To verify that the non-stationarity of the original time series, I created a correlogram. 
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While the sample autocorrelation does tend towards zero, it does so slowly, indicating a non-stationary time series. In order to make the time series stationary, I took first differences and applied the same tests. The graph of first differences below indicates no trend upwards or downwards, and the correlogram starts high, oscillating towards zero. This indicates that the first difference is stationary, and that an autoregressive component is present. 
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[image: image4.emf]Correlogram - First Differences
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To be thorough, I also tested the second difference of the time series for stationarity. A correlogram of second differences’ autocorrelations indicated that it, too, was stationary and contained an autoregressive component. However, due to the theory of parsimony I decided to focus my efforts on the series of first differences.
4. Model Specification


I ran regressions testing three models: AR(1), AR(2), and AR(3) on the first differences of the original time series. Results for each are include in the next sub-sections. 

4.a. AR(1) model


An AR(1) model takes the form of Yt =  + Yt-1 + t. Using Excel’s built in regression analysis tool, I produced the following results:
	Regression Statistics
	
	
	Time Series Statistics

	Multiple R
	0.37485354
	
	
	Chi-Square
	50.659770

	R Square
	0.14051518
	
	
	Box-Pierce
	70.78194

	Adjusted R Square
	0.13277207
	
	
	Durbin-Watson
	2.273877933

	Standard Error
	0.10036131
	
	
	
	

	Observations
	113
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	1
	0.182785032
	0.18279
	18.14713256
	4.30199E-05

	Residual
	111
	1.118035505
	0.01007
	
	

	Total
	112
	1.300820537
	 
	 
	 


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.00842836
	0.009462152
	-0.8907
	0.374993136

	Lag 1
	-0.36871364
	0.086553613
	-4.2599
	4.30199E-05



The AR(1) model produces an extremely low Adjusted R2, indicating that this model is a poor fit. The D-W statistic is somewhat higher than two, indicating that the residuals may have a slight negative correlation. The Box-Pierce Q statistic at 40 lags is significantly higher than the Chi-Squared statistic at 10% significance, indicating that do not follow a white-noise process.
4.b. AR(2)

An AR(2) model takes the form of Yt =  + Yt-1 + Yt-2 + t. Using Excel’s built in regression analysis tool, I produced the following results:

	Regression Statistics
	
	
	Time Series Statistics

	Multiple R
	0.5540037
	
	
	Chi-Square
	50.659770

	R Square
	0.3069201
	
	
	Box-Pierce
	33.46889

	Adjusted R Square
	0.2942031
	
	
	Durbin-Watson
	1.974901667

	Standard Error
	0.0892813
	
	
	
	

	Observations
	112
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	2
	0.384759956
	0.192379978
	24.13451666
	2.10227E-09

	Residual
	109
	0.868855917
	0.007971155
	
	

	Total
	111
	1.253615873
	 
	 
	 


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.0135413
	0.008479705
	-1.59690414
	0.113182252

	Lag 1
	-0.5167442
	0.084557765
	-6.1111382
	1.56503E-08

	Lag 2
	-0.4460333
	0.083167072
	-5.36310026
	4.63098E-07


The AR(2) model produces an higher Adjusted R2 than the AR(1) model, indicating an improved fit over the previous. However, at 29.4%, it is still quite low. The D-W statistic is very close to two, confirming the null hypothesis that there is no serial relation between residuals. The Box-Pierce Q statistic at 40 lags is well below the Chi-Squared statistic at 10% significance, indicating that the residuals follow a white-noise process.
4.c. AR(3)

An AR(3) model takes the form of Yt =  + Yt-1 + Yt-2 + Yt-3 + t. Using Excel’s built in regression analysis tool, I produced the following results:

	Regression Statistics
	
	
	Time Series Statistics

	Multiple R
	0.57042
	
	
	Chi-Square
	50.659770

	R Square
	0.32538
	
	
	Box-Pierce
	31.70307

	Adjusted R Square
	0.30646
	
	
	Durbin-Watson
	2.063559924

	Standard Error
	0.08681
	
	
	
	

	Observations
	111
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	3
	0.3888863
	0.1296288
	17.20252488
	3.45616E-09

	Residual
	107
	0.8062931
	0.0075354
	
	

	Total
	110
	1.1951794
	 
	 
	 


	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.0128
	0.0083699
	-1.527368
	0.129620163

	Lag 1
	-0.5348
	0.0932701
	-5.733576
	9.19734E-08

	Lag 2
	-0.5279
	0.0954096
	-5.533153
	2.25375E-07

	Lag 3
	-0.1009
	0.0909251
	-1.109612
	0.26965379


The AR(3) model produces slightly higher Adjusted R2 than the AR(2) model, indicating an improved fit over the previous. Despite the improvement, it is still quite low. The D-W statistic remains very close to two, confirming the null hypothesis that there is no serial relation between residuals. The Box-Pierce Q statistic at 40 lags is well below the Chi-Squared statistic at 10% significance, indicating that the residuals follow a white-noise process.

5. Conclusion


I have summarized statistics from the three models tested in the following table for comparison:
	
	AR(1)
	AR(2)
	AR(3)

	R^2
	0.141
	0.307
	0.325

	Adjusted R^2
	0.133
	0.294
	0.306

	B-P Q
	70.782
	33.469
	31.703

	Chi^2
	50.66
	50.66
	50.66

	D-W Statistic
	2.274
	1.975
	2.064



Given the low Adjusted R2 of each model, I would likely conclude I have not stumbled upon the actual process underlying winning Boston Marathon times. It is likely that determining the process would require greater sophistication than the methods available in this course. However, if I absolutely needed a model to work with, I would choose the AR(3) model because although it’s Durban-Watson statistic is slightly further from 2 than the AR(2) model, it has a higher Adjusted R2.  This model is described by the following equation:
Yt = -.0128 - .5348Yt-1 - .5279Yt-2 - .1009Yt-3 + 
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