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Introduction
For the past few years, the United States has been in an economic downturn.  While the causes of this downturn are debatable, there is no argument that unemployment has greatly increased during this period.  One of the hardest hit states is California, where unemployment is among the highest in the nation, at 12.0% as of March 2011.  

In this study, I will attempt to model California’s unemployment rate using autoregressive models.

Data
I have collected over ten years of California unemployment data from http://www.bls.gov/data. This data has already been seasonally adjusted by the Bureau of Labor Statistics in order to smooth the month-to-month variations and allow for historical comparisons.
To analyze the data, I used Excel’s built in regression function for the AR models and for the ARMA model, I used a macro created by Kurt Annen which is available at www.web-reg.de.

Data Analysis
I first simply graphed the unemployment rates by month (Figure 1).  From 2001 until the end of 2007, the unemployment rate was relatively stable, hovering between 5% and 7%.  Then, at the beginning of 2008, the unemployment rate began to increase dramatically until leveling off above 12%.  The past two data points have shown signs of the rate decreasing.  
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       Figure 1

I then analyzed the sample autocorrelation function (ACF) of the raw CA unemployment rates (Figure 2).  If the sample were stationary, the autocorrelation function would approach zero as the lag k increases and then fluctuation around zero.  The autocorrelation function for the CA unemployment rates decreases as the lag increase and crosses zero at lag 26.  It then remains negative and fluctuates until approaching zero again at lag 120.  Thus the data is non-stationary.  
[image: image2.emf]Sample Autocorrelation
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       Figure 2

I also looked at the ACFs for the first and second differences (figures 3 and 4).  While the first difference does not seem to be stationary, the second difference seems to fit the description of a stationary function.  This indicates that the second difference is stationary and has an autoregressive component. 
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         Figure 3

[image: image4.emf]Sample Autocorrelation Second Difference
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         Figure 4
Model Fitting

Looking at the second difference, we attempted to fit the model to AR(1), AR(2), and AR(3) models.  The results of the model are shown below:
	 
	Second Difference

	 
	AR(1)
	AR(2)
	AR(3)

	Adjusted R Square
	0.233
	0.241
	0.239

	Chi Square (100 lags)
	117.41
	117.41
	117.41

	Box-Pierce
	54.96
	45.28
	48.15

	Durbin-Watson
	2.09
	1.88
	2.02


Model Equations:
AR(1)= -0.0033 – 0.502Yt-1 + et

AR(2)= -0.0029 – 0.5598Yt-1 – 0.1292 Yt-2 + et
AR(3)= -0.0038 – 0.5248 Yt-1 – 0.0426 Yt-2 + 0.1402 Yt-3 + et
All three of these models have very similar adjusted R2 values which show they all have roughly the same fit.  
The Durbin-Watson statistic tests for autocorrelation in the residuals.  All three models do not have Durbin-Watson statistics that vary significantly from 2.0.  This indicates that there is no significant autocorrelation in the residuals.

For the Box-Pierce Q statistic I used the first 100 lags to produce the statistic.  At the 10% significance level, all three models have Box-Pierce Q statistics lower that the chi-squared critical value we can not reject that the residuals are white noise.  
[image: image5.emf]Acutal Versus Second Difference Models
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         Figure 5
I graphed results for the three second difference models versus the actual data (Figure 5) for the past three years to see how the models fit the actual data.  All three models are similar in that they under- fit the model from 2008 to 2010 although the AR(3) models seems to do the worst.  
Since the adjusted R2 values are all similar, and the Box-Pierce and Durbin-Watson test statistics do not give us more information, I would select the AR(1) model over the other AR models.  This is because of the principle of parsimony which states we should use the model that requires the smallest number of parameters. 
Additional Model

Due to the poor fit of the AR(1), AR(2), and AR(3) models, I decided to look at an ARMA(1, 1) model which combines an autoregressive model with a moving average model.  This model was done using the actual unemployment values (not the differences).
The results of this model were much more promising and are shown below:

	 
	ARMA(1,1)

	Adjusted R Square
	0.998

	Chi Square (100 lags)
	117.407

	Box-Pierce
	383.295

	Durbin-Watson
	1.345


The adjusted R2 value of 0.998 shows the model is a very good fit to the data.  The Box-Pierce statistic is higher than the chi-square thus we reject the hypothesis that the residuals of the models are white noise.  The Durbin-Watson value of 1.345 shows there is serial correlation in the residuals.  

I have also graphed the last three years of actual unemployment values versus the predicted values from the model (Figure 6).  As you can see, the model fits the data very well and even begins to decrease in the last data point (something the AR models did not do).  It also is a much closer fit to the actual data than the AR models were.
[image: image6.emf]Acutal Versus ARMA(1,1) Model
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       Figure 6
Conclusion

I have summarized the adjusted R2 and Durbin-Watson values from the models tested in the following table for comparison:
	 
	Second Difference
	 

	 
	AR(1)
	AR(2)
	AR(3)
	ARMA(1,1)

	Adjusted R Square
	0.233
	0.241
	0.239
	0.998

	Chi Square (100 lags)
	117.41
	117.41
	117.41
	117.41

	Box-Pierce
	54.96
	45.28
	48.15
	383.29

	Durbin-Watson
	2.09
	1.88
	2.02
	1.345


It is obvious that the ARMA(1,1) model is a much better fit than any of the AR models.  It has a much higher adjusted R2 value and the Durbin-Watson statistic shows there is serial correlation in the residuals.  Thus I would use the ARMA(1,1) model to model California unemployment.  The model is described by the following equation:

Yt = 1.008Yt-1 + et+ 0.5733et-1
