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Introduction: 

We live in an era where computer technology affects every aspect of our lives.  From analyzing 

spreadsheets all day on our Dell computers to checking Facebook on our Apple iPhones, the American 

society is constantly using electronic hardware to get things done.  This doesn’t just affect our 

productivity or social networking, but our recreation as well.  Gaming consoles have become a familiar 

addition to many living rooms in the United States. 

My goal is to model the monthly sales of a popular gaming console, the Playstation 2 (PS2).  Not only 

am I interested in this subject, but the data will allow me to explore some very important time series 

topics such as seasonality and stationarity. 

Data: 

My monthly PS2 sales data was obtained from the PVC Museum website located at 

www.pvcmuseum.com/games/charts/monthly-console-hardware-sales-in-america.htm. 

The timeframe available was from November 2001 to March 2010.  Below is a simple graph of this data 

with respect to month-year of sales: 

 

 
 

As one can see by the high annual peaks around December, seasonality is definitely present.  This 

supports the common knowledge that U.S. retail shopping dramatically increases during the holiday 

season.  We need to deseasonalize this data, but let’s first look at the corresponding correlogram (plot of 

the sample autocorrelation function pk). 

http://www.pvcmuseum.com/games/charts/monthly-console-hardware-sales-in-america.htm
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This graph also shows high peaks every 12 months, confirming our assumption of seasonality.  

However, at this point, it is difficult to make any conclusion about stationarity.  Let’s first deseasonalize 

the observations by computing monthly seasonal indices and removing the seasonal variations (as shown 

below).  Then we can address the issue of stationarity. 
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Month Seasonal Index 

January 0.76599 

February 0.87743 
March 0.74195 

April 0.54920 
May 0.59056 
June 0.89073 
July 0.66722 
August 0.63164 
September 0.75835 

October 0.65530 
November 1.54244 
December 3.32918 

 

 

Now let’s examine the correlogram corresponding to our deseasonalized data: 
 

 

 

This sample autocorrelation function does not exhibit strong seasonality.  The high peaks have been 

removed, confirming that our method of deseasonalization was successful.  However, it only declines 

slowly and doesn’t even cross pk=0 until lag 36.  There is definitely doubt as to whether this is a 

stationary series. 

To address this issue, let’s first-difference the deseasonalized data and examine its correlogram.  If we 

observe that pk decreases rapidly and remains small, we can be confident that the resulting series is a 

stationary, non-seasonal time series. 

  

To the left, we have the monthly seasonal indices computed using the 

method on page 483 of Econometric Models and Economic Forecasts, 

4th Edition; Pindyck and Rubinfeld.  Please refer to my Excel 

workbook for additional details on these computations. 

The resulting deseasonalized data is shown as a blue line in the graph 

above.  Notice that most of the seasonal variation has been removed, 

while the long-term downward trend and short-term irregular 

fluctuations still remain. 

The long-term downward trend can be explained by a gradual decrease 

in demand.  This is reasonable, considering the release of other popular 

gaming consoles, such as the Playstation 3 and other competitor 

devices. 
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To better examine changes in the sample autocorrelation function, the correlogram above maintains the 

same scale as the previous deseasonalized-only correlogram.  One can see that pk now rapidly declines 

and settles about zero (recall that p0=1 for any stochastic process).  Therefore, the transformed data is a 

stationary, non-seasonal series.  We are now ready to construct a time-series model.  
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Model Specification: 

Define ýt to be the first-differences of the deseasonalized data which was shown to be a stationary, non-

seasonal series.  Since the correlogram of ýt seems to peak roughly every 3 periods (see the graph 

immediately above), we might suspect that ýt is autoregressive of order 3.  Let’s explore this theory by 

estimating the parameters of an AR(3) model through Microsoft Excel and examining our results. 

Autoregressive Model AR(3) 

ýt = Φ1ýt-1 + Φ2ýt-2 + Φ3ýt-3 + δ +εt 
 

SUMMARY OUTPUT 
     Regression Statistics 

    Multiple R 0.319524885 
 

   R Square 0.102096152 
    Adjusted R Square 0.073131512 
    Standard Error 0.846160851 
    Observations 97 
    

ANOVA 
       df SS MS F Significance F 

Regression 3 7.571263233 2.523754411 3.524854828 0.017992696 

Residual 93 66.58690122 0.715988185 
  Total 96 74.15816445 

   

        Coefficients Standard Error t Stat P-value 
 Intercept -0.055907519 0.086539744 -0.646032872 0.519849035 
 X Variable 1 -0.251752028 0.103906748 -2.422865045 0.017335505 
 X Variable 2 -0.255673893 0.103095095 -2.479981151 0.01493837 
 X Variable 3 -0.003908148 0.103158216 -0.037884993 0.969860583 
  

 

As part of the regression output, Excel also provides a set of residuals.  I used this information to 

calculate two statistics: the Durbin-Watson statistic and the Box and Pierce (Q) statistic.  

The Durbin-Watson statistic was found to be 1.9969, which is very close to 2.0.  This would suggest that 

we accept the null hypothesis H0: no serial correlation amongst residuals. 

The Box and Pierce (Q) statistic for this model with K=25 was 10.0854.  At a 10% significance level, 

this statistic is far below the X
2
 critical value of 30.8133.  The X

2
 p-value for 10.0854 with K=25 (which 

was 0.9855) is also well above 10%.  Therefore, we cannot reject the null hypothesis H0: the residuals 

are a white noise process. 

These two statistics favor our model.  However, the R
2
 value from our regression (0.1021) does not.  By 

definition, the R
2
 value is the proportion of the total variation in Y explained by the regression of Y on 

X.  One must keep in mind that R
2
 is only a descriptive statistic and there may be several reasons for a 

low R
2
.  Even so, I wanted to examine another model to see if I could improve on it. 

 

I chose an autoregressive model of order 4, which would give me an additional independent variable 

within my model.  My hope was that the conclusions based off of the Durbin-Watson statistic and Box 

and Pierce statistic would stay the same, while my R
2
 value would increase. 

Below are the regression results for this AR(4) model. 

Excel worksheet “AR(3)” contains the data used to generate 

this regression, as well as the calculation of related statistics. 
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Autoregressive Model AR(4) 

ýt = Φ1ýt-1 + Φ2ýt-2 + Φ3ýt-3 +  Φ4ýt-4 + δ +εt 
 

SUMMARY OUTPUT 
     Regression Statistics 

    Multiple R 0.367916846 
 

   R Square 0.135362805 
    Adjusted R Square 0.097356775 
    Standard Error 0.839405518 
    Observations 96 
    

ANOVA 
       df SS MS F Significance F 

Regression 4 10.03807565 2.509518913 3.561613869 0.009567444 

Residual 91 64.1187477 0.704601623 
  Total 95 74.15682336 

   

        Coefficients Standard Error t Stat P-value Lower 95% 

Intercept -0.066813814 0.086511294 -0.772313192 0.441930149 -0.238657869 

X Variable 1 -0.252525851 0.103081951 -2.449758165 0.016209141 -0.45728548 

X Variable 2 -0.308721458 0.106569183 -2.896911168 0.004719962 -0.520408044 

X Variable 3 -0.052807573 0.105619292 -0.49998037 0.618295787 -0.262607317 

X Variable 4 -0.188399734 0.102365313 -1.840464596 0.068959235 -0.391735848 

 

Again, I used the set of residuals provided by Excel to calculate the Durbin-Watson statistic and the Box 

and Pierce (Q) statistic. 

The Durbin-Watson statistic was 2.0215, which is also very close to 2.0.  This would cause us to accept 

the null hypothesis H0: no serial correlation amongst residuals. 

The Box and Pierce (Q) statistic for this model with K=25 was 11.7868.  At a 10% significance level, 

this statistic is far below the X
2
 critical value of 29.6151.  The X

2
 p-value for 11.7868 with K=25 (which 

was 0.9452) is much greater than 10%.  Therefore, the conclusion remains the same - we cannot reject 

the null hypothesis H0: the residuals are a white noise process. 

Looking at the regression output above, we see that the R
2
 value has become 0.1354.  This is slightly 

better, but not by much.  This suggests that we need to significantly increase the order of the 

autoregressive model or explore the possibility of adding moving average terms.  However, finding the 

optimal model was not the intent of this project.  I leave the opportunity for further analysis to upcoming 

student projects. 

Conclusion: 

I have created two graphs which compare the original series with the predicted values of our AR(3) and 

AR(4) models.  The first graph shows the first-differences of the deseasonalized data, both actual and 

modeled.  This would be ýt as defined above and the predicted values resulting from our Excel 

regressions. 

The second graph shows the monthly Playstation (PS2) console sales in the United States, both actual 

and modeled.  The modeled values were found by performing a reverse transformation on the Excel 

regression predicted values: adding the modeled first-differences to the actual, initial observation and re-

seasonalizing the data.  As one can see, the modeled data doesn’t give a perfect fit.  However, the 

overall behavior and slight downward trend are apparent. 

Excel worksheet “AR(4)” contains the data used to generate 

this regression, as well as the calculation of related statistics. 
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Supporting Documents: 

“KeelyMDavison-TimeSeriesVEEproject.xlsx” 


