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Introduction

Looking through the datasets used in the Cryer/Chan textbook, I found one that seemed interesting: Beer sales, which shows the monthly beer sales in millions of barrels from January 1975 to December 1990. While I’m not a heavy drinker, I really enjoy trying different beers and thought I’d have more fun analyzing data about something I’m interested in. By getting a proper time series fit to this data, I should be able to simulate past beer sales data and predict future data.
Data
I noticed some very obvious seasonality in the beer sales data. Beer sales during the summer months were high and beer sales during the winter months were low. This makes intuitive sense since people are more likely to go out during the summer months. I spoke with a few people in the food and drink service industry who confirmed that their summer sales are much higher than sales during the rest of the year, and winter sales tend to be much lower.
I eliminated the seasonality from the data and plotted the original data verses the data adjusted for seasonality using this seasonal index derived from actual data:
	January
	0.88

	February
	0.87

	March
	1.03

	April
	1.04

	May
	1.13

	June
	1.15

	July
	1.14

	August
	1.12

	September
	0.98

	October
	0.95

	November
	0.86

	December
	0.84
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Autocorrelation graphs:
To see if the time series is stationary, I used a plot of the autocorrelations against the seasonality-adjusted data. As we can see, the autocorrelations start very high, slowly decrease to zero around lag 58, the remain at -.1 to -.2 for the remaining lags. This indicates that the process is not stationary.
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I took the first differences of the seasonality-adjusted data and then plotted the autocorrelations again. The first lag is a large number (-.44) but then the autocorrelations quickly hover around zero. This indicates that the process is stationary.
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Now that we have a stationary process, the next step is modeling the data using ARIMA. While it may be appropriate to use larger numbers of parameters for the best fit, for the purpose of the student project, low numbers of parameters will be used for simplification.
I tested three ARIMA models: ARIMA(1,1,0), ARIMA(2,1,0), and ARIMA(3,1,0). I performed a quick “sniff test” of the different predicted variables:
	
	
	P Value

	Model
	Adj. R Square
	First X Var
	Second X Var
	Third X Var

	ARIMA(1,1,0)
	0.1921
	0
	N/A
	N/A

	ARIMA(2,1,0)
	0.3103
	0
	0
	N/A

	ARIMA(3,1,0)
	0.3013
	0
	0
	0.684


As you can see, the jump from ARIMA(1,1,0) to ARIMA(2,1,0) produces a material increase in the Adjusted R Square and still maintains strong P Values. The jump from ARIMA(2,1,0) to ARIMA(3,1,0), however, loses some predictive power in the Adjusted R Square and has a high P Value for the third variable. From a quick glance, the ARIMA(2,1,0) looks to be the best fit, but let’s do some more testing and diagnostics.

First let’s see if we notice any obvious differences graphically. I removed the ARIMA(3,1,0) from the graph because it didn’t pass my test in the previous paragraph.
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From the graph alone, it’s difficult to determine which of the two models is best at predicting the beer sales activity. In order to help us determine which model is better, we’ll turn to the Box-Pierce Q test and the Durbin-Watson Statistic.
	Model
	Durbin-Watson
	Box-Pierce Q
	Chi^2

	ARIMA(1,1,0)
	2.34
	156.19
	95.48

	ARIMA(2,1,0)
	1.96
	114.45
	95.48

	ARIMA(3,1,0)
	1.99
	110.42
	95.48


For the Durbin-Watson statistic, values closer to 2 are desirable. Both the ARIMA(2,1,0) and the ARIMA(3,1,0) are very close to 2, which indicates that the residuals are probably not correlated. For ARIMA(1,1,0), however, the Durbin-Watson statistic is slightly higher, which may indicate some serial correlation between the residuals.

For the Box-Pierce Q statistic, a Box-Pierce Q value lower than the Chi^2 value is desirable, since it shows that the residuals probably form a white noise process. Unfortunately, all the Box-Pierce Q values for my three models are above the Chi^2 value, showing that we should reject the hypothesis that the residuals form a white noise process. This indicates a problem with the model. A better model could perhaps be found by using more parameters, splitting the data into different time periods, or adding a moving average component.
Summary
Looking at the results from all my tests, it appears that the ARIMA(2,1,0) model is the best fit for the data. The adjusted R squared is reasonably high, it seems to fit the data graphically, and its Durbin-Watson statistic is almost exactly 2. Unfortunately, the Box-Pierce Q value is higher than the Chi^2 value, indicated the need to refine the model even further in order to achieve the best fit.
