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Income Gap Between the Rich and the Poor
Introduction


Most people have heard the quote “The rich are getting richer and the poor are getting poorer?”  We know that there is an income gap between the rich and the poor.  But, is this saying true?  If so, how would we model this data?  In the following paper, I try to model this data with an autoregressive model in order to answer this question.
Data


This data is from the US Census Bureau’s website.  It is found in the historical data, under the “Household” section.  It is Table H-1. Income Limits for Each Fifth and Top 5 Percent for all races.  The webpage address is http://www.census.gov/hhes/www/income/data/historical/household/index.html.  I accessed this information on July 20, 2011.
Data Analysis

I took what the website calls the “upper limit of the lowest fifth” and the “lower limit of the top 5 percent” and used these as my 20th and 95th percentile values.  For purposes of this project, I am going to use the 20th percentile as my “poor” value and the 95th percentile as my “rich” value.  This should eliminate all outliers.  These values are the second and third columns in the data below.  The next step I took was to calculate out the difference between these values.  The amount the 95th percentile is higher than the 20th percentile is in the forth column.  I then divided this by the 20th percentile to get the difference as a percent of the 20th percentile.  This is the last column in the table below.  There are a total of 43 data points, with years 1967 through 2009 represented.  
	Year
	20th Percentile
	95th Percentile
	Difference
	Difference as a Percent of 20th Percentile

	2009
	20,453 
	180,001 
	159,548 
	780.1%

	2008
	20,712 
	180,000 
	159,288 
	769.1%

	2007
	20,291 
	177,000 
	156,709 
	772.3%

	2006
	20,035 
	174,012 
	153,977 
	768.5%

	2005
	19,178 
	166,000 
	146,822 
	765.6%

	2004
	18,486 
	157,152 
	138,666 
	750.1%

	2003
	17,984 
	154,120 
	136,136 
	757.0%

	2002
	17,916 
	150,002 
	132,086 
	737.3%

	2001
	17,970 
	150,499 
	132,529 
	737.5%

	2000
	17,920 
	145,220 
	127,300 
	710.4%

	1999
	17,136 
	142,000 
	124,864 
	728.7%

	1998
	16,116 
	132,199 
	116,083 
	720.3%

	1997
	15,400 
	126,550 
	111,150 
	721.8%

	1996
	14,768 
	119,540 
	104,772 
	709.5%

	1995
	14,400 
	113,000 
	98,600 
	684.7%

	1994
	13,426 
	109,821 
	96,395 
	718.0%

	1993
	12,967 
	104,639 
	91,672 
	707.0%

	1992
	12,600 
	99,020 
	86,420 
	685.9%

	1991
	12,591 
	96,400 
	83,809 
	665.6%

	1990
	12,500 
	94,748 
	82,248 
	658.0%

	1989
	12,096 
	91,750 
	79,654 
	658.5%

	1988
	11,382 
	85,640 
	74,258 
	652.4%

	1987
	10,800 
	80,928 
	70,128 
	649.3%

	1986
	10,247 
	77,106 
	66,859 
	652.5%

	1985
	9,941 
	72,004 
	62,063 
	624.3%

	1984
	9,500 
	68,500 
	59,000 
	621.1%

	1983
	8,949 
	63,500 
	54,551 
	609.6%

	1982
	8,400 
	60,086 
	51,686 
	615.3%

	1981
	8,024 
	55,200 
	47,176 
	587.9%

	1980
	7,478 
	50,661 
	43,183 
	577.5%

	1979
	7,000 
	46,860 
	39,860 
	569.4%

	1978
	6,318 
	42,055 
	35,737 
	565.6%

	1977
	5,734 
	38,000 
	32,266 
	562.7%

	1976
	5,405 
	35,000 
	29,595 
	547.5%

	1975
	5,000 
	32,129 
	27,129 
	542.6%

	1974
	4,860 
	30,600 
	25,740 
	529.6%

	1973
	4,397 
	28,950 
	24,553 
	558.4%

	1972
	4,050 
	26,555 
	22,505 
	555.7%

	1971
	3,800 
	24,138 
	20,338 
	535.2%

	1970
	3,688 
	23,175 
	19,487 
	528.4%

	1969
	3,575 
	21,800 
	18,225 
	509.8%

	1968
	3,323 
	19,850 
	16,527 
	497.4%

	1967
	3,000 
	19,000 
	16,000 
	533.3%



I then created a graph of the difference as a percent of the 20th percentile.  It is below.  It shows how the percent has been increasing every year.  This graph seems to show a gradual increase in this percent over time.  This would indicate that this process is not stationary.  A stationary process has a constant probability.  So, it is true that this statistic is increasing.  The rich are getting richer relative to the poor.  But, how can we model this data?
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The next graph shows the autocorrelation at each of the lags.  A lag is the relationship between two values being compared.  So, lag1 means that 1967 is compared to 1968, 1968 is compared to 1969, etc.  Lag2 means that 1967 is compared to 1969, 1968 is compared to 1970, etc.  I do believe this sample is stationary. If this were stationary, the correlation would approach zero as the lag increases, then ocillate around zero.  We do see the autocorrelation behaving this way.  Perhaps if we had more data points, this would be more obvious.  Being stationary rules out an ARIMA model.  
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The graphs below show the lag1 and lag2 of the difference as a percent of the 20th percentile.  This would be the first difference of the difference as a percent of the 20th percentile and the second difference of the difference as a percent of the 20th percentile.  
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The graphs of Yt to Yt-1 and Yt to Yt-2 below shows a strong positive correlation, since you can almost draw a straight upward line through the plot.  (A negative correlation would be the mirror image of this line.)  This suggests an Autoregressive (AR) process with a strong positive correlation.  If this were a Moving Average (MA), the plot would not follow this pattern.  It would cover the plot area in a random pattern.  My conclusion is that this is not a MA model. 
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Since we’ve already figured out that the processes are not an MA or an ARMIA model, let’s look at the AR and ARMA models and compare.  I used Kurt Annen’s ARMA VBA to do this.  It is available at http://www.web-reg.de/.  

AR(1):  

	timeseries: y
	 
	 
	 
	 

	Method: Nonlinear Least Squares (Levenberg-Marquardt)
	 

	date: 07-25-11 time: 15:37
	
	
	 

	Included observations: 42
	
	
	 

	p = 1 - q = 0 - no constant - manual selection
	
	 

	 
	
	
	
	 

	 
	Coefficient
	Std. Error
	t-Statistic
	Prob.

	 
	
	
	
	 

	AR(1)
	1 
	0 
	287 
	0 

	 
	 
	 
	 
	 

	R-squared
	0.970519
	
	Mean dependent var
	6.440741

	Adjusted R-squared
	0.970519
	
	S.D. dependent var
	0.854029

	S.E. of regression
	0.146637
	
	Akaike info criterion
	-0.978193

	Sum squared resid
	0.881598
	
	Schwarz criterion
	-0.936820

	Log likelihood
	21.542056
	 
	Durbin-Watson stat
	2.379260
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ARMA(1):

	timeseries: y
	 
	 
	 
	 

	Method: Nonlinear Least Squares (Levenberg-Marquardt)
	 

	date: 07-21-11 time: 12:09
	
	
	 

	Included observations: 42
	
	
	 

	p = 1 - q = 1 - no constant - manual selection
	
	 

	 
	
	
	
	 

	 
	Coefficient
	Std. Error
	t-Statistic
	Prob.

	 
	
	
	
	 

	AR(1)
	1 
	0 
	828 
	0 

	MA(1)
	-1 
	0 
	-5 
	0 

	 
	 
	 
	 
	 

	R-squared
	0.976184
	
	Mean dependent var
	6.440741

	Adjusted R-squared
	0.975588
	
	S.D. dependent var
	0.854029

	S.E. of regression
	0.133436
	
	Akaike info criterion
	-1.143944

	Sum squared resid
	0.712205
	
	Schwarz criterion
	-1.061198

	Log likelihood
	26.022832
	 
	Durbin-Watson stat
	1.689967

	 
	
	
	
	 

	Inverted AR-roots
	1 
	
	
	 

	 
	
	
	
	 

	Inverted MA-roots
	1 
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Conslusion:


The R-squared values of both the AR(1) and ARMA(1,1) are similar.  The Adjusted R2 value for the AR(1) model indicates that the model explains 97.05% of the variation.  The Adjusted R2 value for the ARMA(1,1) indicates that that model explains 97.56% of the variation.  The adjusted R2 value adjusts the R2 to account for the number of parameters in the model.  Otherwise, models with more parameters would have a naturally higher R2 value.  Since we are comparing the AR(1), which has only one parameter to the ARMA(1,1), which has two parameters, it is more appropriate to use the Adjusted number when comparing.  

A visual of the actual vs fitted of these models both look accurate.   The fitted line does follow closely to the actual in both cases.  So, neither of these models is ruled out by this graph.  


The Durban Watson statistic is different.  A Durbin Watson statistic less than 2 indicates a positive serial correlation.  A Durbin Watson statistic more than 2 indicates a negative serial correlation.  The AR(1)’s value of 2.38 indicates a positive correlation and the ARMA(1,1)’s value of 1.69 indicates a negative correlation.  We know that there is a positive correlation from the Yt to Yt-1 and Yt to Yt-2 plots.  So, the Durbin Watson value for the ARMA(1,1) indicates something we know is untrue about our model.  


While both of these models are good, I would prefer to use the AR(1).  Even though the ARMA(1,1) is a slightly better model according to the R2 value, I want to defer to the principle of parsimony, which requires us to use the least complicated model with the least number of variables as possible.  This would also leave us with a model whose Durbin Watson statistic makes sense.  
