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Time Series Project

Summer 2011

Introduction

Being an avid hockey fan, I was curious on the average number of fights per game over the last few decades.  I always heard that hockey was a much more brutal sport back in the 70’s and 80’s, so I decided to find out for myself just how brutal it was.  I knew fighting has declined since I started watching it back in the mid 90’s and even more so since the lockout in 2004.  I am hoping to predict future fights per game by fitting an ARIMA model through the data.  

Data 
I obtained data from http://www.dropyourgloves.com.  The data is in the form of fights per game from 1975 to 2010.  I chose to use fights per game because the number of games in a season has changed over the years, thus making it difficult to use total number of fights per season.  To put these numbers in perspective, for 2010 there were an average number of 0.56 fights per game.  There are 30 teams in the league and a total of 1230 games are played per season.  Multiplying 1230 and 0.56 will give a grand total of 688 fights that year.  The year 2004 was omitted because of a lockout so I only have 35 data points.  I will examine the stationarity of the data and determine whether or not the data was generated by a white noise process.  The data can be found in the ‘Data’ tab of the attached excel spreadsheet.  

Below is a graph of the raw data.  As expected the data reaches a peak in the mid 80’s and then starts to decline.  There is a big decline in 1992 because of the instigator rule that was implemented that year.  There was another decline in the 2005 season because of rule changes to help speed up the game and make it more difficult to fight.    Players eventually adapt and fighting starts to increase slightly in the following years.  Since this data is broken down by year there won’t be any seasonality, but monthly fights per game would be an interesting project with definite seasonality.  
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Test of Stationarity

To correctly model the data we need a stationary time series.  We can test this by graphing the autocorrelation function.  I used the same methodology as the Time Series Techniques spreadsheet to do this.  This information is in the ‘Data’ tab of the attached spreadsheet.  Below is the correlogram.
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As you can see, the data declines to zero by lag 8 and stays near zero by lag 24.  The book is pretty vague on what “quickly” means when referring to how quickly a series moves to zero.  It appears that the time series is stationary to me, but let’s take a look at the first difference anyway.
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The first difference approaches zero by lag 2 and continues to oscillate around zero for the entire series.  I would feel comfortable using either the original correlogram or the first difference for my model.  Since the original data is slightly easier to work with I will use it.  

Analysis

Now the question is which model is the best fit.  Judging by graphs in the book I would say an AR(1) or AR(2) would be sufficient, but I’ll graph Yt vs Yt-1 and Yt vs Yt-2 just in case.
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Both charts show strong positive correlation, which is a tell tale sign of an AR model.  An MA model looks more scattered with hardly any correlation.  I will test AR(1), AR(2), and AR(3) models using Excel’s regression function.

Model Estimation
A pth-order autoregressive process (Yt) satisfies the equation below:

Yt = (1Yt-1 + (2Yt-2 + …… + (pYt-p + (+ et
Since I will be testing AR(1), AR(2), and AR(3) models, inputting a 1, 2, or 3 into the above equation will give me the three equations I need.  I used Excel’s built in regression analysis tool to find the ( values.  My work can be found in the ‘AR’ tabs of the attached excel spreadsheet.  Below is a summary of the data:

	 
	R2
	Adj R2
	
	
	
	
	's
	DWS

	AR(1)
	0.67715558
	0.6670667
	0.81870375
	 
	 
	0.14773
	0.8187
	2.13693

	AR(2)
	0.66975741
	0.64774124
	0.73696781
	0.09999
	 
	0.13287
	0.83696
	1.95777

	AR(3)
	0.6819056
	0.64782406
	0.73113585
	0.08535
	0.05472
	0.10082
	0.8712
	1.99894


	 
	p-value 
	p-value 
	p-value 

	AR(1)
	2.3368E-09
	 
	 

	AR(2)
	0.00037776
	0.58470183
	 

	AR(3)
	0.0005528
	0.71507794
	0.76899049


The data for all three models are very similar.  The R-squared values are very close and the Durbin Watson statistics are all very close to 2.  The p-values, however, have me leaning heavily towards an AR(1) model.  A p-value greater than 0.05 means that the variable associated with that value is not significant.  Both (2 and (3 in the AR(2) and AR(3) models are insignificant.  The adjusted R-squared is also slightly higher in the AR(1) model.  Because of this I will be using the AR(1) to model my data.      

Analysis of Residuals
I performed the Durbin-Watson test and the Box-Pierce Q test  on all three autoregressive models.  Since I am using the AR(1) model I will discuss my findings regarding it.  I used the Time Series Techniques methodology to compute the following results:

Using the above tests, I hope to find that the residuals are a white noise process with no correlation.  The autocorrelation of lag 1 on the residuals using the exact formula is -0.083, which is very close to zero.  This indicates almost no serial correlation with the residuals.  

The Durbin-Watson Test also shows almost no serial correlation with the residuals.  I computed a DWS of 2.14, which is close enough to 2 to assume no correlation.  

The Box-Pierce Q Statistic is yet another way to determine if the residuals are a white noise process.  It does this by testing whether or not the residuals have an approximate normal distribution with variance of 1/T.  Comparing the Q statistics computed in excel to a (2 distribution with 10% significance we can determine this.  Which Q statistic to use is debatable, but luckily every Q statistic in my data is less than the (2 statistic.  For instance, I have a Q statistic of 17.854 at T=17.  The critical value at 10% significance and 16 degrees of freedom is 23.541.  Since 17.854 is less than 23.541 I cannot reject the null hypothesis that the residuals are a white noise process.  

All three tests show that the residuals are a white noise process.  This is proof that an AR(1) model is a good fit for the data.

Forecasting
I want to predict the average number of fights per game in the NHL next season using an AR(1) model.  The equation is:

Yt = 0.818704Yt-1 + 0.14773

Below is a graph of the actual values vs the predicted values:
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As you can see the predicted data is pretty close to the actual data.  I honestly didn’t think I would find a model that fit hockey fight data whatsoever when I began this project.  I find these results very interesting.  It will never be exact but I think the AR(1) model does a good job in responding to the actual variation in the data.  

I will now put on my magician outfit and make a prediction for the 2011-2012 NHL season.  Solving for the year 2011 gives a predicted value of 0.6062.  Unless something crazy happens, 1230 total games should be played next year in the regular season.  Multiplying 1230 and 0.6062 gives a total of 745 fights next season.  Only time will tell how accurate that prediction really is.  
