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Time Series Project  

Introduction:

The purpose of this project is to develop an appropriate ARIMA model for daily high temperatures in New York Central Park using data from January 1, 1876 to December 31, 2005.  I used the project template for Daily Temperature and Daily Rainfall.

This project will fit several different time series models; AR(1), AR(2) and AR(3), to the data and test the appropriateness of each model.

Data used:

The model was built using daily data for New York Central Park from 1876 through 2004.  I used the 2005 data to test my results.
First the data was corrected for missing information.  Low temperatures for 1/7/1948 and 9/25/1999 were missing and were corrected by interpolating with the surrounding values.  Rainfall was missing for 1/1/1890, 7/31/1897, and 11/26/1934.  These were all interpolated with surrounding values and were set equal to 0.  All of the data was missing for February 1991.  This data was eliminated.

The average daily high temperature was calculated for each day of the year by averaging the high temperature for each date over 129 years.  The high temperature for February 29, was only averaged over 32 years.  The average daily temperatures are graphed below.  The graph shows the high seasonality of the data.  The average temperature peaks in July and has a low in the beginning of February.  Because of the strong seasonality of this data, the data needs to be de-seasonalized before a model is created. 

The standard deviation of the daily temperature in January 1876 is 11.66.  Therefore, the standard deviation of the average daily temperature in January over 129 years should be 11.66/(129)1/2 = 1.027.  The actual standard deviation of the average daily temperature in January over 129 years is 0.878.
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Centered Moving Averages:

To smooth the data, I tested a centered 7-, 15- and 31-day moving average over the data.  The data plotted for the 7-day and 15-day moving average are jagged with fluctuations every 30 days.  Therefore, I chose a 31-day moving average which smoothes the data with a low point on January 25th and a high point on July 21st.  The below chart shows the graph of the 7-, 15, and 31-day moving averages:
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Seasonality:

Seasonality was eliminated by subtracting the 31-day centered moving average from the observed data.  This is an additive model because the seasonally adjusted daily temperature is calculated by subtracting the centered moving average rather than dividing by it.  The average of the 47,100 seasonally adjusted data points is 0.000275.  To get an average closer to zero, 0.000275 was subtracted from each of the 47,100 data points.
White Noise:
The average daily temperatures are not a white noise process.  A positive residual is more likely to be followed by another positive residual than a negative residual, and a negative residual is more likely to be followed by a negative residual than a positive residual.  This can be seen by the clustering of the positive and negative average daily temperatures on the graph below.  This indicates a 1 greater than zero.
Random Walk:

The average daily temperatures are not a random walk.  A large, positive residual is usually followed by a lower residual and a large negative residual is usually followed by a higher residual.  This can be seen by the bouncing around below and above the axis in the graph below.
The evidence that the pattern of residuals for daily temperature is not a white noise process or random walk can be seen in the graph below:

[image: image3.emf]White Noise and Random Walk Analysis
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Autocorrelation:
Using the seasonally adjusted data for the data set, I looked at the sample autocorrelation using all data points.  The graph below shows the first 40 lags of the sample autocorrelation of the entire data series.  The correlogram shows that the sample autocorrelation falls to zero and stays around zero as the lags get larger.  This is an indication that the time series is stationary.  The first three displacements are significantly greater than zero: 0.587, 0.300 and 0.198.  This suggests the model is AR(1), AR(2) or AR(3).
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Developing the ARIMA models:
AR(1), AR(2) and AR(3) processes were fit to the data.  I used the linear regression add-in to Microsoft Excel to determine the AR(1), AR(2) and AR(3) models.
AR(1):

yt =  yt-1 + 
	Regression Statistics

	Multiple R
	       0.63815 

	R Square
	       0.40723 

	Adjusted R Square
	       0.40560 

	Standard Error
	       6.93598 

	Observations
	              366 


	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	-1.043808994
	0.377304566
	-2.7664892

	X Variable 1
	0.6347073
	0.040137036
	15.813507


AR(2):

yt =  yt-1 – 0.016 yt-2 – 1.1430   
	Regression Statistics

	Multiple R
	         0.63083 

	R Square
	         0.39794 

	Adjusted R Square
	         0.39462 

	Standard Error
	         6.88764 

	Observations
	               365 


	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	-1.143012945
	0.378761
	-3.01777

	X Variable 1
	0.631613557
	0.052134
	12.11526

	X Variable 2
	-0.016027703
	0.051769
	-0.3096


AR(3):

yt =  yt-1 – 0.00655 yt-2 – 0.01478 yt-3 – 1.16958  
	Regression Statistics

	Multiple R
	        0.62277 

	R Square
	        0.38784 

	Adjusted R Square
	        0.38274 

	Standard Error
	        6.90490 

	Observations
	              364 


	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	-1.169582047
	0.384624
	-3.04085

	X Variable 1
	0.628939291
	0.052779
	11.91652

	X Variable 2
	-0.006553662
	0.061961
	-0.10577

	X Variable 3
	-0.014781264
	0.051907
	-0.28476


Durbin-Watson Test:
Next I tested if there is serial correlation in the residuals of the proposed models.

Null Hypotheses: No serial correlation for the regressions

	Model
	Durbin-Watson Test Statistic

	AR(1)
	1.98416

	AR(2)
	2.00172

	AR(3)
	1.98771


A value close to 2 means we can accept the null hypothesis.  While all of the models pass the Durbin-Watson test, the AR(2) model has a test statistic closest to 2.
Box Pierce Q-Test Statistic:

The Box-Pierce Q statistic tests that the residual autocorrelations are uncorrelated, normally distributed with mean zero and variance 1/T.
Null Hypothesis: The residuals are generated by a white noise process

	Model
	Box-Pierce Q Statistic (k=100)
	Critical 10% Level
	Result

	AR(1)
	85.53
	116.32
	Accept

	AR(2)
	84.79
	116.32
	Accept

	AR(3)
	86.71
	116.32
	Accept


We accept the null hypothesis that there is no serial correlation for all three regressions.  Again, the AR(2) model has the best fit.
Conclusion:

The data was fit to three time series models, AR(1), AR(2) and AR(3) to determine an appropriate model for daily high temperatures in New York Central park.  The models were developed and tested to determine which model is most appropriate to use.  I conclude the best model to fit the high temperate is the AR(2) model.  
Below are the graphs of the actual high temperatures for 1987 and 2005 versus the predicted temperatures using the AR(2) model: yt =  yt-1 – 0.016 yt-2 – 1.1430   
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[image: image6.emf]2005 Actual vs. Estimate using AR(2)
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