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Spring 2010

Time Series – Student Project

Mozzarella Cheese Prices

When most people sit down to watch a movie, they settle in with a nice big bag of popcorn. I, on the other hand, opt for a block of cheese and a knife. Therefore, when it came time to choose a topic for my student project, I decided to analyze the monthly prices of cheese. Since my cheese of choice is almost always mozzarella, I decided to focus my analysis on only this type of cheese. I will use the monthly prices of mozzarella cheese, and try to fit the data to a model that will attempt to predict the future monthly prices for this product.
Data

My original data came from the website http://future.aae.wisc.edu/.  To find the monthly cheese prices, I clicked on the “Dairy Data” tab. This tab provided a subtopic called “Prices”, which contained the Wholesale Cheese Prices, listed by cheese type in $/lb. From here I found the monthly prices of Mozzarella cheese from January 1975 to June 2011. This was more data than I needed, so I decided to focus on the past 10 years, beginning with January of 2001 and ending with December of 2010. Since the purpose of my project is to find a model that will try to predict future prices, I’ve decided not to use the 2011 prices so that I can compare them to the results of my selected model. Also, please note that I did not adjust the prices for inflation, since the low inflation rates from 2001 to 2010 would result in a minimal impact to the price per pound.
The data described above, along with the backup information and charts contained in the following report, can be found in the attached spreadsheet Sweeney - Time Series Student Project Data.xlsx. The full data set taken from the website can be found on the tab ‘Original Data’.
Original Time Series Analysis

My first step in working with this data was to graph the price of mozzarella cheese over the period January 2001 to December 2010. The graph is shown below, but can also be found in the attached spreadsheet on the tab ‘Time Series Data Used’, along with the list of data used in this project. There doesn’t seem to be any pattern or seasonality occurring in this data series, so there is no need to perform seasonality corrections. The graph appears to be slowly trending upwards, with a spike in May of 2004, followed by a drop in prices with the low occurring in March of 2006, followed by a period of higher prices from July 2007 through January 2009. Using this graph alone is not enough to identify the proper model for the data.
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Autocorrelation of Original Data Series
In order to further analyze this data set, I decided to graph a correlogram showing the sample autocorrelation function at each lag. To calculate the sample autocorrelation function, I used the following formula:
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 for k =1, 2, …
The attached spreadsheet contains a tab called ‘Autocorrelation – Original’ which shows the development of the points on this graph. The graph of the sample autocorrelation against the lag times is shown below. 
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This graph decreases rapidly becoming negative around lag 18; it then becomes positive between lags 24 and 50. After lag 50, the graph remains negative, fluctuating between negative points before approaching zero. Since this graph does not appear to trend towards zero, or fluctuate around a constant mean, I have concluded that the original data series is not stationary. Therefore, I will have to attempt to find a transformation that will results in a stationary series.
Autocorrelation of First Difference
I attempted to find a transformation that would result in a stationary data series. I decided to look at the first differences of the monthly price of mozzarella. The function I used was: Dt = Yt - Yt-1. The correlogram below shows the sample autocorrelation function, rk, versus the lag, k. The data and calculations used can be found in the attached spreadsheet on the tab ‘Autocorrelation - 1st Diff’.
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The graph of the sample autocorrelation of the first differences shows a trend towards zero, with decreasing fluctuations. However, I wanted to look at the autocorrelation function of the second differences, to see how it compares to the autocorrelation of the first differences. 

Autocorrelation of Second Difference

In order to calculate the second differences, I used the function: Wt = Dt - Dt-1 = Yt - Yt-1 - Yt-1 - Yt-2 = Yt - 2Yt-1 - Yt-2.

I then used the autocorrelation function defined above to develop the sample autocorrelation graphed versus the monthly lag. This graph shown below can also be found in the attached spreadsheet on the tab ‘Autocorrelation - 2nd Diff’, along with the data and calculations used to develop the values.
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The graph above trends towards zero with smaller fluctuations in the later lags suggests stationarity. Also, the graph of the sample autocorrelation of second differences trends towards zero earlier, and has much less fluctuation at later lags than the graph of the first differences. Therefore, I will move forward with the rest of my project using the second differences, and assuming stationarity for this data series.
Model Analysis
The next step in the process is to fit several models to the data and decide which model will be the most appropriate choice for predicting future monthly prices of mozzarella cheese. Based on the Sample Autocorrelation graph above, it would seem that a more complicated ARIMA model would be more appropriate. However, for this project, I will look at 3 simple models: AR(1), AR(2), and AR(3).
The formulas for these three models are as follows:
AR(1): Yt = φYt-1 + et
AR(2): Yt = φ1Yt-1 + φ2Yt-2 + et
AR(3): Yt = φ1Yt-1 + φ2Yt-2 + φ3Yt-3 + et
I used the Regression Add-In for Excel to solve the above equations as follows:

AR(1): Yt = -0.31398Yt-1 – 0.001
AR(2): Yt = -0.39584Yt-1 – 0.26668Yt-2 – 0.00139
AR(3): Yt = -0.46261Yt-1 – 0.36781Yt-2 – 0.24953Yt-3 – 0.00185
All of the data sets and the resulting regression add-in tool output can be found in the attached spreadsheet in tabs labeled ‘Data for AR(X) Model’ and ‘AR(X) Model’, for X = 1,2,3.
One thing to note is that the sum of the coefficients for each of the models above is less than 1, and |φp|<1 for p = 1, 2, 3 in each of the above models. These two inequalities are necessary for stationarity, which backs up my previous assumption.
I decided that my next step was to graph each of the individual models above against the actual 2nd difference data I found earlier. These three graphs are as follows:
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These graphs, and the data used to populate them, can also be found in the attached spreadsheet on the tab ‘Model Graphs’. Strictly looking at the graphs, I would say that the AR(2) and AR(3) graphs are a better fit for the data than the AR(1) graph. These two graphs were able to get closer to the spikes in March of 2004 and October of 2008. However, I will need to analyze the models more closely using various techniques to help me determine which model will be the best fit.

Model Statistics & Testing
Now that I have three potential models to choose from, I need to do some statistical testing to help with the final decision. The first statistic I will use is the Durbin-Watson Statistic. This statistic is used to test for serial correlation. I developed this statistic using the residuals from the regression tool output  in excel. The calculations can be found in the attached spreadsheet on the tabs ‘AR(1) Model’, ‘AR(2) Model’ and ‘AR(3) Model’. The result of this test for each model is shown below:
	Model
	Durbin-Watson Statistic

	AR(1)
	2.1632

	AR(2)
	2.1302

	AR(3)
	2.1113


All three models result in a Durbin-Watson statistic of close to 2, with AR(2) and AR(3) being the closest. Since a Durbin-Watson Statistic of 2 indicates no serial correlation, we can see from the results that these models have almost no serial correlation between them. While the statistic for AR(1) is the greatest, it is not significantly better than the other two models, so we cannot use this statistic alone to determine the most appropriate model.

The next test I performed was to test whether the time series used here is a white noise process. The null hypothesis in this test is that the residuals are a white noise process. The test used to here was the Box-Pierce Q statistic. Using the calculations provided by the NEAS spreadsheet TimeSeriesTechniques.xls, I developed the Box-Pierce Q statistic for each model. The calculations can be found in the attached spreadsheet on the tabs ‘AR(1) Model’, ‘AR(2) Model’ and ‘AR(3) Model’. In the table below, I have shown the Box-Pierce Q statistic, the degrees of freedom for this statistic and the corresponding χ2 value at the 10% significance level.
	Model
	Box-Pierce Q Statistic
	DOF
	χ2 (10%)

	AR(1)
	48.2413
	116
	134.8135

	AR(2)
	47.8965
	115
	133.7286

	AR(3)
	46.9566
	114
	132.6433


The above results show that all three potential models have similar results. For all three of the models, the Box-Pierce Q Statistic is significantly lower than the χ2 value. This means that we are unable to reject the null hypothesis that the residuals are a white noise process.

Model Selection
The next step is to select the most appropriate model for this time series. Based on the results above, I would not choose the AR(1) model, since the Durbin-Watson statistic is the farthest from 2, and the Box-Pierce Q statistic is the highest of the three. My choice is now between the AR(2) and AR(3) models. In the table below, I show the adjusted R square values from the excel regression output for all three models.
	Model
	Adjusted R Square

	AR(1)
	0.0902

	AR(2)
	0.1468

	AR(3)
	0.1932


These results further support my decision to eliminate the AR(1) model, since it has the lowest adjusted R square. When comparing the AR(2) and AR(3) models, I see that the Box-Pierce Q statistic of the AR(3) model is 0.94 lower than the AR(2) model, and the adjusted R square is 0.0464 higher than the AR(2) model. Taking these results, along with the fact that the Durbin-Watson statistic was the closest to 2 for the AR(3) model, I have decided to go with the AR(3) model even though it has the most parameters.

Forecast
Now that I have chosen the model, I want to use it to predict the monthly price of mozzarella per pound and compare it to the actual results from January 2011 to June 2011. Recall from above that the formula for the AR(3) model is AR(3): Yt = -0.46261Yt-1 – 0.36781Yt-2 – 0.24953Yt-3 – 0.00185. Using this formula I was forecasted the next 6 months of mozzarella prices. The forecasts, along with the graph comparing them to the actual second difference results, can be found in the attached spreadsheet on the tab ‘Forecast’. The graph is shown below. The graph of the forecasted second differences follows the general increase and decrease pattern, but it is unable to predict the high peaks in February and June, or the low peak in April. However, this is to be expected based on the adjusted R square value being a lower value, 0.1932.
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Conclusion
The best estimator examined in this project was the AR(3) model. However, since the trend of this analysis indicated that increasing parameters would bring the Durbin-Watson statistic closer to 2, lower the Box-Pierce Q statistic, and increase the adjusted R square value, I feel that an autoregressive model with more parameters would be better suited to predict the monthly prices of mozzarella cheese.
