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Introduction 

Orange juice is a breakfast must have. It is made mostly by extraction from fresh fruit. Being a 

loyal customer of Tropicana, which owns 65% of the US orange juice market, I have long 

noticed the fluctuation in orange juice prices in the supermarkets.  

 

In this study, I will look at 30 years of monthly orange prices data. The data will most likely 

show seasonal trends as people tend to consume more orange products in the summer. I will 

review few models and select the best fit. 

 

Data 

I am using data from 

http://www.indexmundi.com/commodities/?commodity=oranges&months=360 

The data exhibits monthly price of oranges in US dollars per metric ton. I am using 30 years of 

price data, from July 1981 through June 2011. 

 

Model specifications 

Graphing the data, there appears to be a general upward price trend in the past 10 years. 

Additionally, prices have been more volatile in the past 10 years.  
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Examining the graphs below, it is hard to detect any seasonality in the data. Seasonal trend is 

apparent in years 2007, 2008, 2010 and not so apparent in years 2005, 2006, 2009. 

 

 
 

 

Autocorrelations 

Next, we will graph a correlogram, i.e. sample autocorrelation function, which will show the 

correlation for each time lag. The sample autocorrelation function at lag k is defined as  
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The autocorrelations start very high and gradually grade down to zero around lag 87. 

Autocorrelations then remain between 0 and -.275. Since autocorrelations do not fluctuate 

around some mean or quickly drop to zero, this is not a stationary process. 

 

To create a stationary process we assume that prices follow logarithmic pattern. We then create a 

new series by taking logarithms and then computing first differences. 

 

Below are the plots of the First Differences of Logarithms and Correlogram of the First 

Differences of Logarithms. The autocorrelation function of the first differences of logarithms 

decreasingly fluctuates towards zero. On the basis of these plots, we may consider this series a 

stationary process. 
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Assuming stationary, we will fit the following models to the data: ARIMA(1,1,0), 

ARIMA(2,1,0), and ARIMA(3,1,1). The parameters for the series were estimated using method 

of moments and Yule-Walker equation below: 

 

 
 

The parameters were verified in Excel regression analysis tool. 

 

ARIMA(1,1,0): Yt=2.7950+0.5571Yt-1 

 

Regression Statistics 

Multiple R 0.7387 

R Square 0.5456 

Adjusted R Square 0.5443 

Standard Error 0.2561 

 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 2.7950 0.1690 16.5432 0.0000 

Y(t-1) 0.5571 0.0269 20.7332 0.0000 

 

ARIMA(2,1,0): Yt=2.7992-0.6243Yt-1+0.0681Yt-2 
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Regression Statistics 

Multiple R 0.7412 

R Square 0.5493 

Adjusted R Square 0.5468 

Standard Error 0.2554 

 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 2.799236147 0.168514124 16.61128509           0.00000  

Y(t-2) -0.068119261 0.039748959 -1.713736977           0.08745  

Y(t-1) 0.624316455 0.047513252 13.13983834           0.00000  

 

ARIMA(3,1,0): Yt=2.8097+0.6200Yt-1-0.0198Yt-2-0.0458Yt-3 

 

Regression Statistics 

Multiple R 0.7423 

R Square 0.5510 

Adjusted R Square 0.5472 

Standard Error 0.2553 

 

  Coefficients 

Standard 

Error t Stat P-value 

Intercept 2.8097 0.1687 16.6566 

                 

0.00  

Y(t-3) -0.0458 0.0399 -1.1500 

                 

0.25  

Y(t-2) -0.0198 0.0578 -0.3422 

                 

0.73  

Y(t-1) 0.6200 0.0476 13.0154 

                 

0.00  

 

The parameters above were confirmed using Excel regression analysis tool. Additionally, the 

sum of coefficients is less than 1, confirming stationary nature of series.  

 

Graphs 

 

ARIMA(1,1,0) 



 
 

ARIMA(2,1,0) 

 
 

ARIMA(3,1,0) 
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Summary 

It is difficult to determine from the graphs which model is the best fit. Moving from 

ARIMA(1,1,0) to ARIMA(2,1,0) increases R-square value. Moving from ARIMA(2,1,0) to 

ARIMA(3,1,0) also increases R-square value. However, ARIMA(3,1,0) exhibits large P-values. 

It appears that the best fit models are either ARIMA(1,1,0) or ARIMA(2,1,0). Durbin-Watson 

statistic is best for autoregressive models. It indicates the likelihood that the residuals have a 

first-order autoregression component.   

 

 

 

ARIMA(1,1,0) AR(2,1,0) ARIMA(3,1,0) 

Durbin-Watson 2.17 2.03 2.09 

 

Based on the values in the table above, it appears that residual autocorrelation is unlikely for 

ARIMA(2,1,0). ARIMA(1,1,0) has somewhat higher than 2 DW-statistics which may indicate 

possible correlation between residuals. Overall, ARIMA(2,1,0) model appears to be preferable 

estimator for predicting oranges monthly price.  
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