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Introduction

Google Trends is a web tool that allows one to get data on the popularity of various search terms / news items over time. I chose the term “travel” to see if there had been any trend in this search. My assumption would be that searches for travel have been on the decline since it seems that travel is losing popularity as the cost and perceived risk increases.
Data
Data is available weekly as an index relative to the average search traffic for the term over the period provided. The index is only provided to two decimal places, but is likely accurate enough for this project. There is clear seasonality in the data and so I made an effort to correct for it. I developed a seasonality index by month by taking the ratios of each week’s index to the average for that year. The seasonality index is the average of all those ratios for a given month:
	Month
	Seasonality Index

	January
	          1.12 

	February
	          1.05 

	March
	          1.02 

	April
	          1.01 

	May
	          1.03 

	June
	          1.08 

	July
	          1.13 

	August
	          1.04 

	September
	          0.92 

	October
	          0.86 

	November
	          0.85 

	December
	          0.83 
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The autocorrelation of the seasonally adjusted data does not reach 0 until around lag 151. This indicates that it is not a stationary process. However, the autocorrelation of the first differences oscillates between +/- 0.1 with a few outliers. The magnitude in general declines as the lag increases. It seems to be a stationary process.
	Process
	R^2
	Durbin-Watson Statistic
	Box-Pierce Q
	Chi^2 90%

	ARIMA(1,1,0)
	0.104549
	2.154228
	611.7797
	419.9161

	ARIMA(2,1,0)
	0.15205
	2.15337
	482.9768
	417.8234

	ARIMA(3,1,0)
	0.239684
	2.112309
	320.5858
	417.8234

	ARIMA(4,1,0)
	0.260616
	2.034796
	332.9885
	420.9623


Fitting the time series to ARIMA processes with q=1 and p=1,2,3, and 4 respectively yields the above regression statistics. The Durbin-Watson Statistic and Box-Pierce Statistic seem to suggest that the first differences are not a white noise process for ARIMA(3,1,0) and ARIMA(4,1,0). Since R^2 is not significantly improved for ARIMA(4,1,0) over the ARIMA(3,1,0) model we select the ARIMA(3,1,0). Applying these modeled first differences to a starting value and comparing to actual leads to the following graph.
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Summary
While the drift appears to be accurate, deviations seem to be in the opposite direction. This possibly suggests that the model could be improved by including a moving average component. Further refinement of this model could produce a fairly accurate forecasting tool. By looking at the Durbin-Watson and Box-Pierce statistics it seems clear that the series is not simply white noise but it remains to be seen what the full pattern is.
