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Time Series Analysis of Teen Pregnancy

Introduction

I have been very interested in the recent years’ media awareness of teen pregnancy.  Shows like “Teen Mom” and “16 & Pregnant” capture my attention.  I thought it would be interesting to complete a time series project on this topic.  I was a little disappointed to find that the most recent data out there is a little stale, but I went ahead with the topic anyway because it still interested me.  I analyzed the data to try and fit it to a model that could help me predict future years’ teen pregnancy rates.

Data

The data I gathered is from 1972 through 2006 and came from http://www.guttmacher.org/pubs/USTPtrends.pdf.  I constructed the model using data from 1972 – 2002 and used data from 2003 - 2006 to see if my forecast was accurate.  The actual data used is on the “Teen Pregnancy Data” tab of my Excel spreadsheet.  I have also included a graph below:
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The graph shows that teen pregnancy rates grew fairly steadily from 1972 up until 1980.  Through the 1980’s the rate was fairly stable, and then grew from about 1988 until 1991.  At that point in time, the rates decreased and have been decreasing very steadily ever since. 
Model Specification

The graph of the original data set on page 1 does not show any predisposition to seasonality.  Therefore, I will not be adjusting the data set for that.  Therefore, to further analyze the data, I have graphed the sample autocorrelation of the data set, which is shown below:
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The graph decreases pretty quickly and reaches zero at about lag 7.  It then has negative autocorrelation for lags 8 through 24.  From there, it becomes positive at lag 25 for the rest of the graph.  As you can see, the sample autocorrelations do not oscillate about zero and therefore, I have concluded that this time series is not stationary.  In order to build a stationary time series, I will take the first differences.  The graph below shows the first differences of the sample autocorrelation:
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As shown above, the graph decreases to zero slightly quicker than the sample autocorrelation of the data set graph, but still not quick enough.  Also, the autocorrelations of the first differences show more oscillation around zero from lags 6 to 15, but after that they remain negative.  Due to this, I do not believe the model is stationary yet.  Therefore, I have also graphed the sample autocorrelation of the second differences below:
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As you can tell from the above graph, the sample autocorrelation decreases to zero much more rapidly, then oscillates about zero and as the lags increase, the autocorrelations get closer and closer to zero.  Therefore, this model is stationary.  I will use the second differences to build my model.
Model Fitting and Diagnostics
The next step is to try and fit several models to the data and figure out which one fits the best.  Using the Excel Regression Add-In, I tested three simple autoregressive models, AR(1), AR(2) and AR(3).  These can be found in the Excel workbook and I have also shown a summary of the equations below:
AR(1):  Yt = -0.3373Yt-1 – 0.0150
AR(2):  Yt = -0.5108Yt-1 – 0.3312Yt-2 – 0.0181
AR(3):  Yt = -0.4338Yt-1 – 0.2353Yt-2 + 0.2445Yt-3 – 0.0096
As you can see above, all of the models have the sum of coefficients less than one, which indicates stationarity.  Therefore, I am more confident that choosing the second differences values for my model was the correct choice to make.
Below is a table showing the summary values for each of the three models above:

Table 1.1 Summary of Regression Output and Statistical Testing
	Model
	R2
	Adjusted R2
	Durbin-Watson Statistic
	Box-Pierce Q Statistic (at lag 20)
	Chi-Square at 10%

	AR(1)
	0.1257
	0.0907
	2.3207
	11.8105
	27.2036

	AR(2)
	0.2566
	0.1919
	1.8388
	7.2656
	27.2036

	AR(3)
	0.3117
	0.2133
	1.7368
	9.9640
	27.2036


The Adjusted R2 values are a good indication of the fit of the data to the model.  All three models have pretty low Adjusted R2 values, but AR(3) has the highest.  This makes it the best fit for the data if we were only concerned about the Adjusted R2 value.  However, we have other means of justifying the best model for the data, so we will now check the goodness of fit based on the Durbin-Watson Statistic.
The Durbin-Watson Statistic indicates if there is any serial correlation in the model.  If the Durbin-Watson statistic is 2, that indicates there is no serial correlation present in the model.  Therefore, with the AR(1) model having a Durbin-Watson statistic of 2.3207 and the AR(3) model having a Durbin-Watson statistic of 1.7368, the AR(2) model has the Durbin-Watson statistic value closest to 2 at 1.8388.  This means that the AR(2) model is the model with the least serial correlation.  Since looking at this statistic gives us a different answer than the Adjusted R2 value as to which model is the best fit, we will look at another test, the Box-Pierce Q Statistic.

The Box-Pierce Q Statistic tests whether or not the model follows a white noise process.  The null hypothesis is that the residuals are a white noise process, so we test this to see if we will reject or accept the null hypothesis.  The Box-Pierce Q Statistic for all three models say that we can not reject the null hypothesis that the residuals are a white noise process because the Box-Pierce Q Statistics are well below the Chi-Square statistic at a 10% significance level.
Taking all of these results into consideration, I chose the AR(2) model as the best fit.  I chose this model because it has almost the highest Adjusted R2 value (very close to the AR(3) model), it has the Durbin-Watson Statistic that is closest to 2 and has the lowest Box-Pierce Q Statistic (i.e. farthest from the Chi-Square statistic at a 10% significance level).  Also, the AR(2) or AR(3) models are clearly a better fit than the AR(1) model, and per the principle of parsimony, the AR(2) model is better than the AR(3) model.
All of the above calculations can be found in the Excel spreadsheet.  The detail calculations for each model can be found on that model’s tab within the spreadsheet.
Model Forecasting
Now that I have chosen the model that I think best fits the data, I want to forecast the data using the model to predict the pregnancy rates of teens from 2003 – 2006.  I will then compare it to the actual teen pregnancy rates from 2003 – 2006 per the data I gathered to see if my model is a good predictor of future teen pregnancy rates.  The below graph shows the forecasted values using the chosen AR(2) model versus the rea data collected:
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You can see from the graph that the forecasted values do not exactly match the real data that was gathered, however, the movements between the two data sets mimic each other.  When the actual teen pregnancy rates decreased from 2003 through 2005, the forecasted values did also by about the same magnitude.  Also, when the actual pregnancy rates increased in 2006, so did the forecasted value.
Conclusion
After testing three autoregressive models to the original data gathered, the AR(2) model is the best fit.  This was based on testing the models and forecasting the data to the original data set.
