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Introduction

Millions of people in the United States depend on gas every day. As the years have gone by, increasing gas prices have created hardship for many of these Americans. This project uses historical gas prices to create and ARIMA model that can forecast future gas prices.
Data

The data for this project came from the following website:

http://mathforum.org/workshops/sum96/data.collections/datalibrary/data.set6.html
The website compiled the data set based on information from the Bureau of Labor Statistics.

The monthly gas prices from January 1997 to December 2003 are as follows:

[image: image1.emf]Gasoline Prices: 1987 - 2003

0

0.5

1

1.5

2

Jan-97

Apr-97

Jul-97

Oct-97

Jan-98

Apr-98

Jul-98

Oct-98

Jan-99

Apr-99

Jul-99

Oct-99

Jan-00

Apr-00

Jul-00

Oct-00

Jan-01

Apr-01

Jul-01

Oct-01

Jan-02

Apr-02

Jul-02

Oct-02

Jan-03

Apr-03

Jul-03

Oct-03

Time

Dollars per Gallon


Test of Stationarity

The first step in developing our model is analyzing our data to test for stationarity. A process is considered to be a stationary process if its statistical parameters, such as mean and standard deviation, do not change over time. Another parameter that must not change depending on time is the autocorrelation. In order to test our process for stationarity, we will look at the autocorrelation function and examine its dependence on time.

[image: image2.emf]Correlogram

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

135791113151719212325272931333537394143454749

Lag

ACF


The autocorrelation function shows a strong linear relationship for the first sixteen lags, after which it drops below zero. It continues to decline for a short period, and then begins to incline until it just becomes positive. It then quickly drops below zero, and continues going negative displaying linearity. The autocorrelation function for our process shows a dependence on time, indicating that it is not a stationary process.
First Differences

Since our original data does not display stationary characteristics, we must perform transformations on our data to create the process we want.

In an attempt to create a stationary process, we examine the first difference. A plot of the first differences is shown below.
[image: image3.emf]First Differences of Gasoline Prices: 1997 - 2003
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The plot of first differences displays less trend than the original series. We examine the correlelogram of the first differences to further test for stationarity.
[image: image4.emf]Correlogram of First Differences
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The autocorrelation function of the first differences does not indicate a dependence on time. It displays random fluctuations of both positive and negative values, centered on zero. This indicates a stationary process. We will do additional testing to come to solid conclusion.
We perform Bartlett’s test to further examine the stationarity of the process. Bartlett’s test states that if a process is white noise, approximately only five percent of the autocorrelation data points will lie out side of the 95% confidence interval centered on zero. The approximate standard deviation of the process is the reciprocal of the square root of the number of terms. In our process we have the following parameters:
σ = 1/√n = 1/√50 = 0.1414
95% CI = ±1.96*σ = ±1.96*0.1414 =± 0.2772
Adding the confidence interval to our correlogram of first differences, we can see that only one of our fifty observations fall outside of the interval. This indicates a stationary process.
[image: image5.emf]Bartlet's Test
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Model Fitting
Now that we have determined stationarity, we will fit our data to various models. We will use the Excel regression analysis tool to fit our data to an ARIMA(1,1,0) model, ARIMA(2,1,0) model and an ARIMA(3,1,0) model. The resulting model parameters are as follows.

ARIMA(1,1,0)

Y(t)=0.002+0.2426Y(t-1)

[image: image6.emf]Regression Statistics

Multiple R 0.2421

R Square 0.0586

Adjusted R Square 0.0471

Standard Error 0.0704

Observations 84


[image: image7.emf]ANOVA

df SS MS F Significance F

Regression 1 0.0253 0.0253 5.1050 0.0265

Residual 82 0.4058 0.0049

Total 83 0.4311


[image: image8.emf]Coefficients Standard Error t Stat P-value

Intercept 0.00198 0.00768 0.25799 0.79706

Y(t-1) 0.24263 0.10739 2.25943 0.02651


[image: image9.emf]ARIMA(1,1,0)
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ARIMA(2,1,0)

Y(t)=0.003+0.3166Y(t-1)-0.3142Y(t-2)

[image: image10.emf]Regression Statistics

Multiple R 0.3877

R Square 0.1503

Adjusted R Square 0.1293

Standard Error 0.0672

Observations 84


[image: image11.emf]ANOVA

df SS MS F Significance F

Regression 2 0.0648 0.0324 7.1639 0.0014

Residual 81 0.3663 0.0045

Total 83 0.4311


[image: image12.emf]Coefficients Standard Error t Stat P-value

Intercept 0.0030 0.0074 0.4108 0.6823

Y(t-1) 0.3166 0.1057 2.9964 0.0036

Y(t-2) -0.3142 0.1063 -2.9565 0.0041


[image: image13.emf]ARIMA(2,1,0)
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ARIMA(3,1,0)

Y(t)=0.0029+0.3225Y(t-1)-0.3196Y(t-2)+0.0185Y(t-3)

[image: image14.emf]Regression Statistics

Multiple R 0.3880

R Square 0.1506

Adjusted R Square 0.1187

Standard Error 0.0677

Observations 84


[image: image15.emf]ANOVA

df SS MS F Significance F

Regression 3 0.0649 0.0216 4.7271 0.0044

Residual 80 0.3662 0.0046

Total 83 0.4311


[image: image16.emf]Coefficients Standard Error t Stat P-value

Intercept 0.0029 0.0074 0.3934 0.6951

Y(t-1) 0.3225 0.1124 2.8687 0.0053

Y(t-2) -0.3196 0.1121 -2.8519 0.0055

Y(t-3) 0.0185 0.1149 0.1608 0.8726


[image: image17.emf]ARIMA(3,1,0)
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Best Fit Model
Any of the three models we fit does a reasonable job of forecasting, however, there is much more fluctuation on with the actual data than with the forecast. To choose the model that best fits the data, we first look at the produced R squared values. The R squared values increase as we move from ARIMA(1,1,0) to ARIMA(2,1,0) and increase again as we move from ARIMA(2,1,0) to ARIMA(3,1,0).
We must also examine the P-values. The P-values are high for the ARIMA(1,1,0) and ARIMA(3,1,0) models and lower for the ARIMA(2,1,0) model.

Taking into account both the R square values and the P-values, we can conclude that the ARIMA(2,1,0) is the model that best forecasts gas prices.

