TS module 20 seasonal models practice problems
** Exercise 20.1: Seasonal moving average process
A time series is generated by $Y_{t}=e_{t}-\Theta_{1} e_{t-12}-\Theta_{2} e_{t-24}$, with $\sigma_{\varepsilon}^{2}=\sigma^{2}$)
A. What is γ_{0} ?
B. What is $\gamma_{12}=\gamma_{1 \times 12}$?
C. What is $\rho_{12}=\rho_{1 \times 12}$?

Part A: The variance of $Y_{t}=$ variance $\left(e_{t}-\Theta_{1} e_{t-12}-\Theta_{2} e_{t-24}\right)=\sigma^{2}+\Theta_{1}^{2} \times \sigma^{2}+\Theta_{2}^{2} \times \sigma^{2}$.
Part B: The covariance of $\left(Y_{t}, Y_{t-12}\right)=$ covariance $\left(e_{t}-\Theta_{1} e_{t-12}-\Theta_{2} e_{t-24}, e_{t-12}-\Theta_{1} e_{t-24}-\Theta_{2} e_{t-36}\right)=$

$$
-\Theta_{1} \times \sigma^{2}+\Theta_{1} \times \Theta_{2} \times \sigma^{2}
$$

Part C: The autocorrelation for one seasonal lag $=\rho_{12}=\rho_{1 \times 12}=$
$\left(-\Theta_{1} \times \sigma^{2}+\Theta_{1} \times \Theta_{2} \times \sigma^{2}\right) /\left(\sigma^{2}+\Theta_{1}^{2} \times \sigma^{2}+\Theta_{2}^{2} \times \sigma^{2}\right)=\left(-\Theta_{1}+\Theta_{1} \times \Theta_{2}\right) /\left(1+\Theta_{1}^{2}+\Theta_{2}^{2}\right)$

** Exercise 20.2: Seasonal moving average process

A seasonal moving average process has a characteristic polynomial of $(1-\theta x)\left(1-\Theta x^{12}\right)$.
For simplicity, assume $\sigma_{e}^{2}=1$, so we can ignore the $\sigma^{2}{ }_{\varepsilon}$ term in the covariances.
A. What is γ_{0} ?
B. What is γ_{1} ?
C. What is ρ_{1} ?
D. What is γ_{12} ?
E. What is ρ_{12} ?
F. What is γ_{11} ?
G. What is ρ_{11} ?
H. What is γ_{13} ?
I. What is ρ_{13} ?

Part A: This time series can be written as $Y_{t}=e_{t}-\theta e_{t-1}-\Theta e_{t-12}+\theta \Theta e_{t-13}$ (see equation 10.1.2 on page 230).
$\gamma_{0}=1+\theta^{2}+\Theta^{2}+\theta^{2} \times \Theta^{2}=\left(1+\theta^{2}\right) \times\left(1+\Theta^{2}\right)$.
Part B: $\gamma_{1}=$ covariance $\left(e_{t}-\theta e_{t-1}-\Theta e_{t-12}+\theta \Theta e_{t-13}, e_{t-1}-\theta e_{t-2}-\Theta e_{t-13}+\theta \Theta e_{t-14}\right)=$

$$
-\theta-\theta \Theta^{2}=-\theta \times\left(1+\Theta^{2}\right)
$$

Part C: $\rho_{1}=\gamma_{1} / \gamma_{0}=-\theta \times\left(1+\Theta^{2}\right) /\left(1+\theta^{2}\right) \times\left(1+\Theta^{2}\right)=-\theta /\left(1+\theta^{2}\right)$.
Part D: $\gamma_{12}=$ covariance $\left(e_{t}-\theta e_{t-1}-\Theta e_{t-12}+\theta \Theta e_{t-13}, e_{t-12}-\theta e_{t-13}-\Theta e_{t-24}+\theta \Theta e_{t-25}\right)=$

$$
-\Theta-\theta^{2} \Theta=-\Theta \times\left(1+\theta^{2}\right)
$$

Part E: $\rho_{12}=\gamma_{12} / \gamma_{0}=-\Theta \times\left(1+\theta^{2}\right) /\left(1+\theta^{2}\right) \times\left(1+\Theta^{2}\right)=-\Theta /\left(1+\Theta^{2}\right)$.
Part F: $\gamma_{11}=$ covariance $\left(e_{t}-\theta e_{t-1}-\Theta e_{t-12}+\theta \Theta e_{t-13}, e_{t-11}-\theta e_{t-12}-\Theta e_{t-23}+\theta \Theta e_{t-24}\right)=+\Theta \times \theta$.
Part G: $\rho_{11}=\gamma_{11} / \gamma_{0}=\Theta \times \theta /\left(1+\theta^{2}\right) \times\left(1+\Theta^{2}\right)$.
Part H: $\gamma_{13}=$ covariance $\left(e_{t}-\theta e_{t-1}-\Theta e_{t-12}+\theta \Theta e_{t-13}, e_{t-13}-\theta e_{t-14}-\Theta e_{t-25}+\theta \Theta e_{t-26}\right)=+\Theta \times \theta$.
Part I: $\rho_{13}=\gamma_{13} / \gamma_{0}=\Theta \times \theta /\left(1+\theta^{2}\right) \times\left(1+\Theta^{2}\right)$.
Jacob: Do exam problems give the characteristic polynomial for seasonal models?
Rachel: Yes. A characteristic polynomial of $(1-\theta x)\left(1-\Theta x^{12}\right)$ means $Y_{t}=e_{t}-\theta e_{t-1}-\Theta e_{t-12}+\theta \Theta e_{t-13}$

** Exercise 20.3: Seasonal moving average process

A seasonal moving average process has a characteristic polynomial of $(1-\theta x)\left(1-\Theta x^{12}\right)$, with $\theta=0.4, \Theta=$ 0.5 , and $\sigma_{e}^{2}=4$.
A. What is γ_{0} ?
B. What is γ_{1} ?
C. What is ρ_{1} ?
D. What is γ_{12} ?
E. What is ρ_{12} ?
F. What is γ_{11} ?
G. What is ρ_{11} ?
H. What is γ_{13} ?
I. What is ρ_{13} ?

Part A: $\gamma_{0}=\left(1+\theta^{2}\right) \times\left(1+\Theta^{2}\right) \times \sigma_{\varepsilon}^{2}=(1+0.16) \times(1+0.25) \times 4=5.800$.
Part B: $\gamma_{1}=-\theta \times\left(1+\Theta^{2}\right) \times \sigma_{\varepsilon}^{2}=-0.4 \times 1.25 \times 4=-2.000$.
Part C: $\rho_{1}-\theta /\left(1+\theta^{2}\right)=-0.4 / 1.16=-0.345$.
Part D: $\gamma_{12}=-\Theta \times\left(1+\theta^{2}\right) \times \sigma_{\varepsilon}^{2}=-2.320$.
Part E: $\rho_{12}=-\Theta /\left(1+\Theta^{2}\right)=-0.5 / 1.25=-0.400$.
Part F: $\gamma_{11}=+\Theta \times \theta \times \sigma_{\varepsilon}^{2}=0.4 \times 0.5 \times 4=0.800$.
Part G: $\rho_{11}=\gamma_{11} / \gamma_{0}=0.13793$.
Part H: $\gamma_{13}=+\Theta \times \theta \times \sigma_{\varepsilon}^{2}=0.4 \times 0.5 \times 4=0.800$.
Part I: $\rho_{13}=\gamma_{13} / \gamma_{0}=0.13793$.

A seasonal ARMA process $Y_{t}=\Phi Y_{t-12}+e_{t}-\theta e_{t-1}$ has a variance of the error term $\sigma^{2}{ }_{e}$.
This is a multiplicative seasonal $\operatorname{ARMA}(p, q) \times(P, Q)$ process, with $p=0, q=1, P=1, Q=0$.
Let k be an integer $(1,2,3, \ldots)$.
A. What is γ_{0} ?
B. What is ρ_{12} ?
C. What is ρ_{13} ?
D. What is ρ_{11} ?
E. What is $\rho_{12 k}$?
F. What is $\rho_{12 k+1}$?
G. What is $\rho_{12 k-1}$?

Part A: The variance of the multiplicative ARMA process is the product of the autoregressive and moving average parts.

- An MA(1) process has $\gamma_{0}=\sigma_{\varepsilon}^{2}\left(1+\theta^{2}\right)$.
- An $\operatorname{AR}(1)$ process has $\gamma_{0}=\sigma^{2}{ }_{\varepsilon} /\left(1-\phi^{2}\right)$.
- A seasonal $\operatorname{AR}(1)$ process has $\gamma_{0}=\sigma_{\varepsilon}^{2} /\left(1-\Phi^{2}\right)$.
- A multiplicative seasonal $\operatorname{ARMA}(p, q) \times(P, Q)$ process has $\gamma_{0}=\sigma^{2}{ }_{e} \times\left(1+\theta^{2}\right) /\left(1-\Phi^{2}\right)$.

Part B: The moving average part of this process has a one-period effect. The 12 month autocorrelation stems from the autoregressive process: $\rho_{12}=\Phi$

Part C: The 13 month autocorrelation is the product of the one-month moving average autocorrelation and the 12 month autoregressive correlation: $\rho_{13}=-\Phi \theta /\left(1+\theta^{2}\right)$

Part D: The 11 month autocorrelation is the product of the moving average autocorrelation for a lag of negative one month and the 12 month autoregressive correlation: $\rho_{13}=-\Phi \theta /\left(1+\theta^{2}\right)$

Jacob: How did we get the moving average autocorrelation for a lag of negative one month?
Rachel: A stationary ARMA process is symmetric: $\rho_{\mathrm{k}}=\rho_{-k}$
Part E: The autocorrelation for a lag of 12 k months is Φ^{k}.
Part F: The autocorrelation for a lag of $12 \mathrm{k}+1$ months is $-\Phi^{\mathrm{k}} \theta /\left(1+\theta^{2}\right)$.
Part G: The autocorrelation for a lag of $12 \mathrm{k}-1$ months is $-\Phi^{\mathrm{k}} \theta /\left(1+\theta^{2}\right)$.
Jacob: For the multiplicative seasonal moving average process, we wrote the process as a combination of error terms to compute the covariance at each lag. Can we do the same with the multiplicative seasonal ARMA process?

Rachel: $Y_{t}=e_{t}+\Phi Y_{t-12}$ can be written as $Y_{t}=e_{t}+\Phi e_{t-12}+\Phi^{2} e_{t-24}+\Phi^{3} e_{t-36}+\ldots$ Combine this infinite series with the moving average piece to get a single expression of error terms. Compute the covariances to get the formulas in the textbook. Each covariance is a infinite series of Φ terms, which is rewritten as $\Phi^{k} /\left(1-\Phi^{2}\right)$.

A seasonal ARMA process $Y_{t}=\Phi Y_{t-12}+e_{t}-\theta e_{t-1}$ has $\Phi=0.4, \theta=0.5$, and $\sigma^{2}{ }_{e}=4$
A. What is γ_{0} ?
B. What is ρ_{12} ?
C. What is ρ_{13} ?
D. What is ρ_{11} ?
E. What is ρ_{24} ?
F. What is ρ_{23} ??

Part A: $\gamma_{0}=\sigma^{2} \times\left(1+\theta^{2}\right) /\left(1-\Phi^{2}\right)=4 \times\left(1+0.5^{2}\right) /\left(1-0.4^{2}\right)=6$
Part B: $\rho_{12}=\Phi=0.4$
Part C: $\rho_{13}=-\Phi \theta /\left(1+\theta^{2}\right)=-(0.4) \times 0.5 /\left(1+0.5^{2}\right)=-0.160$.
Part D: $\rho_{11}=-\Phi \theta /\left(1+\theta^{2}\right)=-(0.4) \times 0.5 /\left(1+0.5^{2}\right)=-0.160$.
Part E: $\rho_{24}=\Phi^{2}=(0.4)^{2}=0.160$.
Part F: $\rho_{23}=-\Phi^{2} \theta /\left(1+\theta^{2}\right)=-(0.4)^{2} \times 0.5 /\left(1+0.5^{2}\right)=-0.064$.
** Exercise 20.6: Seasonal non-stationary $\operatorname{AR}(1)_{12}$ process
A store's toy sales in constant dollars follow a seasonal non-stationary $\operatorname{AR}(1)_{12}$ process: $Y_{t}=\Phi Y_{t-12}+e_{t}$

- Sales are \$10,000 in January 20X1 and \$100,000 in December 20X1.
- Projected sales are \$110,000 in December 20X2.
A. What is Φ ?
B. What are projected sales for January 20X2?
C. What are projected sales for January 20X3?

Part A: Using December 20X1 and December 20X2, we have $\$ 110,000=\Phi \times \$ 100,000 E\left(e_{\dagger}\right) \Rightarrow \Phi=1.1$, since the expected residual is zero.

Part B: The forecast for January 20×2 is $1.1 \times \$ 10,000=\$ 11,000$.
Part C: The forecast for January 20X3 is $1.1 \times \$ 11,000=\$ 12,100$.
(See Cryer and Chan, page 241, last line; $\Phi=1.1$)
Jacob: How do we make this time series into a stationary process?
Rachel: Take logarithms and first differences to make this process stationary.

