TS module 20 seasonal models practice problems

** Exercise 20.1: Seasonal moving average process

A time series is generated by Y $_{\rm t}$ = e $_{\rm t}$ – Θ_1 e $_{\rm t-12}$ – Θ_2 e $_{\rm t-24}$, with $\sigma^2_{~\epsilon}$ = $\sigma^2)$

- A. What is γ_0 ?
- B. What is $\gamma_{12} = \gamma_{1 \times 12}$? C. What is $\rho_{12} = \rho_{1 \times 12}$?

Part A: The variance of
$$Y_t$$
 = variance $(e_t - \Theta_1 e_{t-12} - \Theta_2 e_{t-24}) = \sigma^2 + \Theta_1^2 \times \sigma^2 + \Theta_2^2 \times \sigma^2$.

Part B: The covariance of
$$(Y_t, Y_{t-12})$$
 = covariance $(e_t - \Theta_1 e_{t-12} - \Theta_2 e_{t-24}, e_{t-12} - \Theta_1 e_{t-24} - \Theta_2 e_{t-36})$ =

$$-\Theta_1 \times \sigma^2 + \Theta_1 \times \Theta_2 \times \sigma^2$$

Part C: The autocorrelation for one seasonal lag = ρ_{12} = $\rho_{1\times 12}$ =

$$(-\Theta_{1} \times \sigma^{2} + \Theta_{1} \times \Theta_{2} \times \sigma^{2}) / (\sigma^{2} + \Theta_{1}^{2} \times \sigma^{2} + \Theta_{2}^{2} \times \sigma^{2}) = (-\Theta_{1} + \Theta_{1} \times \Theta_{2}) / (1 + \Theta_{1}^{2} + \Theta_{2}^{2})$$

** Exercise 20.2: Seasonal moving average process

A seasonal moving average process has a characteristic polynomial of $(1 - \theta x)(1 - \Theta x^{12})$.

For simplicity, assume σ_e^2 = 1, so we can ignore the σ_ϵ^2 term in the covariances.

- A. What is γ_0 ?
- B. What is γ_1 ?
- C. What is ρ_1 ?
- D. What is γ_{12} ?
- E. What is ρ_{12} ?
- F. What is γ_{11} ?
- G. What is ρ_{11} ?
- H. What is γ_{13} ?
- I. What is ρ_{13} ?

Part A: This time series can be written as $Y_t = e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}$ (see equation 10.1.2 on page 230).

$$\gamma_0 = 1 + \theta^2 + \Theta^2 + \theta^2 \times \Theta^2 = (1 + \theta^2) \times (1 + \Theta^2).$$

Part B: γ_1 = covariance $(e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}, e_{t-1} - \theta e_{t-2} - \Theta e_{t-13} + \theta \Theta e_{t-14}) =$

$$-\theta - \theta \Theta^2 = -\theta \times (1 + \Theta^2).$$

Part C:
$$\rho_1 = \gamma_1 / \gamma_0 = -\theta \times (1 + \Theta^2) / (1 + \theta^2) \times (1 + \Theta^2) = -\theta / (1 + \theta^2)$$
.

Part D: γ_{12} = covariance $(e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}, e_{t-12} - \theta e_{t-13} - \Theta e_{t-24} + \theta \Theta e_{t-25}) =$

$$-\Theta - \theta^2 \Theta = -\Theta \times (1 + \theta^2)$$
.

Part E: $\rho_{12} = \gamma_{12} / \gamma_0 = -\Theta \times (1 + \theta^2) / (1 + \theta^2) \times (1 + \Theta^2) = -\Theta / (1 + \Theta^2)$.

Part F: γ_{11} = covariance $(e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}, e_{t-11} - \theta e_{t-12} - \Theta e_{t-23} + \theta \Theta e_{t-24}) = + \Theta \times \theta$.

Part G:
$$\rho_{11} = \gamma_{11} / \gamma_0 = \Theta \times \theta / (1 + \theta^2) \times (1 + \Theta^2)$$
.

Part H: γ_{13} = covariance $(e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}, e_{t-13} - \theta e_{t-14} - \Theta e_{t-25} + \theta \Theta e_{t-26}) = + \Theta \times \theta$.

Part I:
$$\rho_{13} = \gamma_{13} / \gamma_0 = \Theta \times \theta / (1 + \theta^2) \times (1 + \Theta^2)$$
.

Jacob: Do exam problems give the characteristic polynomial for seasonal models?

Rachel: Yes. A characteristic polynomial of $(1 - \theta x)(1 - \Theta x^{12})$ means $Y_t = e_t - \theta e_{t-1} - \Theta e_{t-12} + \theta \Theta e_{t-13}$

** Exercise 20.3: Seasonal moving average process

A seasonal moving average process has a characteristic polynomial of $(1 - \theta x)(1 - \Theta x^{12})$, with $\theta = 0.4$, $\Theta = 0.5$, and $\sigma_e^2 = 4$.

- A. What is γ_0 ?
- B. What is γ_1 ?
- C. What is ρ_1 ?
- D. What is γ_{12} ?
- E. What is ρ_{12} ?
- F. What is γ_{11} ?
- G. What is ρ_{11} ?
- H. What is γ_{13} ?
- I. What is ρ_{13} ?

Part A:
$$\gamma_0 = (1 + \theta^2) \times (1 + \Theta^2) \times \sigma_{\varepsilon}^2 = (1 + 0.16) \times (1 + 0.25) \times 4 = 5.800$$
.

Part B:
$$\gamma_1 = -\theta \times (1 + \Theta^2) \times \sigma_{\epsilon}^2 = -0.4 \times 1.25 \times 4 = -2.000$$
.

Part C:
$$\rho_1 - \theta / (1 + \theta^2) = -0.4 / 1.16 = -0.345$$
.

Part D:
$$\gamma_{12} = -\Theta \times (1 + \theta^2) \times \sigma_s^2 = -2.320$$
.

Part E:
$$\rho_{12} = -\Theta / (1 + \Theta^2) = -0.5 / 1.25 = -0.400$$
.

Part F:
$$\gamma_{11} = + \Theta \times \theta \times \sigma_{\epsilon}^2 = 0.4 \times 0.5 \times 4 = 0.800$$
.

Part G:
$$\rho_{11} = \gamma_{11} / \gamma_0 = 0.13793$$
.

Part H:
$$\gamma_{13} = + \Theta \times \theta \times \sigma_{\epsilon}^2 = 0.4 \times 0.5 \times 4 = 0.800$$
.

Part I:
$$\rho_{13} = \gamma_{13} / \gamma_0 = 0.13793$$
.

** Exercise 20.4: Seasonal ARMA process

A seasonal ARMA process $Y_t = \Phi Y_{t-12} + e_t - \theta e_{t-1}$ has a variance of the error term σ_{e}^2 .

This is a multiplicative seasonal ARMA(p,q) \times (P,Q) process, with p = 0, q = 1, P = 1, Q = 0.

Let k be an integer (1, 2, 3, ...).

- A. What is γ_0 ?
- B. What is ρ_{12} ?
- C. What is ρ_{13} ?
- D. What is ρ_{11} ?
- E. What is ρ_{12k} ?
- F. What is ρ_{12k+1} ?
- G. What is ρ_{12k-1} ?

Part A: The variance of the multiplicative ARMA process is the product of the autoregressive and moving average parts.

- An MA(1) process has $\gamma_0 = \sigma_{\epsilon}^2 (1 + \theta^2)$.
- An AR(1) process has $\gamma_0 = \sigma_{\epsilon}^2 / (1 \phi^2)$.
- A seasonal AR(1) process has $\gamma_0 = \sigma_{\epsilon}^2 / (1 \Phi^2)$.
- A multiplicative seasonal ARMA(p,q) × (P,Q) process has $\gamma_0 = \sigma_e^2 \times (1 + \theta^2) / (1 \Phi^2)$.

Part B: The moving average part of this process has a one-period effect. The 12 month autocorrelation stems from the autoregressive process: $\rho_{12} = \Phi$

Part C: The 13 month autocorrelation is the product of the one-month moving average autocorrelation and the 12 month autoregressive correlation: $\rho_{13} = -\Phi \theta / (1 + \theta^2)$

Part D: The 11 month autocorrelation is the product of the moving average autocorrelation for a lag of negative one month and the 12 month autoregressive correlation: $\rho_{13} = -\Phi \theta / (1 + \theta^2)$

Jacob: How did we get the moving average autocorrelation for a lag of negative one month?

Rachel: A stationary ARMA process is symmetric: $\rho_k = \rho_{-k}$

Part E: The autocorrelation for a lag of 12k months is Φ^k .

Part F: The autocorrelation for a lag of 12k+1 months is $-\Phi^k \theta$ / (1 + θ^2).

Part G: The autocorrelation for a lag of 12k-1 months is $-\Phi^k \theta / (1 + \theta^2)$.

Jacob: For the multiplicative seasonal moving average process, we wrote the process as a combination of error terms to compute the covariance at each lag. Can we do the same with the multiplicative seasonal ARMA process?

Rachel: $Y_t = e_t + \Phi Y_{t-12}$ can be written as $Y_t = e_t + \Phi e_{t-12} + \Phi^2 e_{t-24} + \Phi^3 e_{t-36} + \dots$ Combine this infinite series with the moving average piece to get a single expression of error terms. Compute the covariances to get the formulas in the textbook. Each covariance is a infinite series of Φ terms, which is rewritten as $\Phi^k / (1 - \Phi^2)$.

** Exercise 20.5: Seasonal ARMA process

A seasonal ARMA process $Y_t = \Phi Y_{t-12} + e_t - \theta e_{t-1}$ has $\Phi = 0.4$, $\theta = 0.5$, and $\sigma_e^2 = 4$

- A. What is γ_0 ?
- B. What is ρ_{12} ?
- C. What is ρ_{13} ?
- D. What is ρ_{11} ?
- E. What is ρ_{24} ?
- F. What is ρ_{23} ??

Part A:
$$\gamma_0 = \sigma_e^2 \times (1 + \theta^2) / (1 - \Phi^2) = 4 \times (1 + 0.5^2) / (1 - 0.4^2) = 6$$

Part B:
$$\rho_{12} = \Phi = 0.4$$

Part C:
$$\rho_{13} = -\Phi \theta / (1 + \theta^2) = -(0.4) \times 0.5 / (1 + 0.5^2) = -0.160$$
.

Part D:
$$\rho_{11} = -\Phi \theta / (1 + \theta^2) = -(0.4) \times 0.5 / (1 + 0.5^2) = -0.160$$
.

Part E:
$$\rho_{24} = \Phi^2 = (0.4)^2 = 0.160$$
.

Part F:
$$\rho_{23} = -\Phi^2 \theta / (1 + \theta^2) = -(0.4)^2 \times 0.5 / (1 + 0.5^2) = -0.064$$
.

** Exercise 20.6: Seasonal non-stationary AR(1)₁₂ process

A store's toy sales in constant dollars follow a seasonal non-stationary AR(1)₁₂ process: $Y_t = \Phi Y_{t-12} + e_t$

- Sales are \$10,000 in January 20X1 and \$100,000 in December 20X1.
- Projected sales are \$110,000 in December 20X2.
- A. What is Φ ?
- B. What are projected sales for January 20X2?
- C. What are projected sales for January 20X3?

Part A: Using December 20X1 and December 20X2, we have \$110,000 = $\Phi \times 100,000 = \Phi = 1.1$, since the expected residual is zero.

Part B: The forecast for January 20X2 is 1.1 × \$10,000 = \$11,000.

Part C: The forecast for January 20X3 is 1.1 × \$11,000 = \$12,100.

(See Cryer and Chan, page 241, last line; Φ = 1.1)

Jacob: How do we make this time series into a stationary process?

Rachel: Take logarithms and first differences to make this process stationary.