TS Module 9 Non-stationary ARIMA time series
(The attached PDF file has better formatting.)
Time series ARIMA processes practice problems
** Exercise 9.1: ARIMA Process

A time series is $Y_{t}=1.4 \mathrm{Y}_{\mathrm{t}-1}+0.1 \mathrm{Y}_{\mathrm{t}-2}-0.5 \mathrm{Y}_{\mathrm{t}-3}+\mathrm{e}_{\mathrm{t}}+0.3 \mathrm{e}_{\mathrm{t}-1}+0.2 \mathrm{e}_{\mathrm{t}-2}$
A. Write the time series in terms of $\mathrm{W}_{\mathrm{t}}\left(\nabla \mathrm{Y}_{\mathrm{t}}\right)$.
B. What is the ARIMA process followed by this time series?
C. What are the coefficients of this ARIMA process?

Part A: Rewrite the ARIMA process as
$Y_{t}-Y_{t-1}=0.4 Y_{t-1}+0.1 Y_{t-2}-0.5 Y_{t-3}+e_{t}+0.3 e_{t-1}+0.2 e_{t-2}$
$=0.4 \mathrm{Y}_{\mathrm{t}-1}-0.4 \mathrm{Y}_{\mathrm{t}-2}+0.4 \mathrm{Y}_{\mathrm{t}-2}+0.1 \mathrm{Y}_{\mathrm{t}-2}-0.5 \mathrm{Y}_{\mathrm{t}-3}+\mathrm{e}_{\mathrm{t}}+0.3 \mathrm{e}_{\mathrm{t}-1}+0.2 \mathrm{e}_{\mathrm{t}-2}$
$=0.4 \mathrm{Y}_{\mathrm{t}-1}-0.4 \mathrm{Y}_{\mathrm{t}-2}+0.5 \mathrm{Y}_{\mathrm{t}-2}-0.5 \mathrm{Y}_{\mathrm{t}-3}+\mathrm{e}_{\mathrm{t}}+0.3 \mathrm{e}_{\mathrm{t}-1}+0.2 \mathrm{e}_{\mathrm{t}-2}$
$\Rightarrow \mathrm{W}_{\mathrm{t}}=0.4 \mathrm{~W}_{\mathrm{t}-1}+0.5 \mathrm{~W}_{\mathrm{t}-2}+\mathrm{e}_{\mathrm{t}}+0.3 \mathrm{e}_{\mathrm{t}-1}+0.2 \mathrm{e}_{\mathrm{t}-2}$
Jacob: What is the procedure for this transformation?
Rachel: The sum of the coefficients for the Y terms are equal on both sides of the equation.
The left side has a coefficient of 1 . The right side has coefficients of $1.4+0.1-0.5=1$.
Part B: The time series is an $\operatorname{ARIMA}(2,1,2)$ process.

- $\quad d=1$: we took one difference $\left(\nabla Y_{t}\right)$.
- $p=2$: we use W_{t-1} and W_{t-2}.
- $q=2$: we use e_{t-1} and e_{t-2}.

Part C: The ARIMA coefficients are
$\phi_{1}=0.4$
$\phi_{2}=0.5$
$\theta_{1}=-0.3$
$\theta_{2}=-0.2$

A time series is $Y_{t}=\theta_{0}+\alpha_{1} \times Y_{t-1}+\alpha_{2} \times Y_{t-2}+\alpha_{3} \times Y_{t-3}+\beta_{1} \times e_{t}+\beta_{2} \times e_{t-1}+\beta_{3} \times e_{t-2}$
A. Write the time series in terms of $W_{t}\left(\nabla Y_{t}\right)$.
B. What is the ARIMA process followed by this time series?

Part A: Rewrite the ARIMA process as
$Y_{t}-Y_{t-1}=\theta_{0}+\left(\alpha_{1}-1\right) \times Y_{t-1}+\alpha_{2} \times Y_{t-2}+\alpha_{3} \times Y_{t-3}+\beta_{1} \times e_{t}+\beta_{2} \times e_{t-1}+\beta_{3} \times e_{t-2}$
$Y_{t}-Y_{t-1}=\theta_{0}+\left[\left(\alpha_{1}-1\right) \times Y_{t-1}-\left(\alpha_{1}-1\right) \times Y_{t-2}\right]+\left[\left(\alpha_{1}-1\right) \times Y_{t-2}+\alpha_{2} \times Y_{t-2}+\alpha_{3} \times Y_{t-3}\right]+\beta_{1} \times e_{t}+\beta_{2} \times e_{t-1}+\beta_{3} \times e_{t-2}$
The coefficient of $Y_{t-1}-Y_{t-2}$ is $\left(\alpha_{1}-1\right)$.
For this to be an $\operatorname{ARIMA}(2,1,2)$ process, we must have

$$
\begin{gathered}
\left(\alpha_{1}-1\right)+\alpha_{2}=-\alpha_{3} \\
\alpha_{1}+\alpha_{2}+\alpha_{3}=1
\end{gathered}
$$

Jacob: What about the β coefficients?
Rachel: Any β coefficients are fine.

- If $\beta_{1}=1$, then $\phi_{1}=-\beta_{2}$ and $\phi_{2}=-\beta_{3}$.
- If $\beta_{1} \neq 1$, then $\phi_{1}=-\beta_{2} / \beta_{1}$ and $\phi_{2}=-\beta_{3} / \beta_{1}$.
** Exercise 9.3: Combining error terms
Suppose $Y_{t}=M_{t}+e_{t}$ and $M_{t}=M_{t-1}+\epsilon_{t}$
A. Write Y_{t} as a function of $\mathrm{M}_{\mathrm{t}-1}$ and error terms.
B. What type of time series is M_{t} ?
C. What type of time series is Y_{t} ?
D. What is ∇Y_{t} (the first difference of Y_{t})?
E. What is the variance of Y_{t} ?
F. What is the variance of ∇Y_{t} ?
G. What is the covariance of $\nabla \mathrm{Y}_{\mathrm{t}}$ and $\nabla \mathrm{Y}_{\mathrm{t}-1}$?
H. What is ρ_{1}, the autocorrelation of $\nabla \mathrm{Y}_{\mathrm{t}}$ and $\nabla \mathrm{Y}_{\mathrm{t}-1}$?
$\operatorname{Part} A: Y_{t}=M_{t}+e_{t}=M_{t-1}+e_{t}+\epsilon_{t}$
Part B: M_{t} is a random walk.
Part C: $Y_{t}=M_{t-1}+e_{t}+\epsilon_{t}=Y_{t-1}+\epsilon_{t}+e_{t}-e_{t-1}$. This is a random walk with a more complex error term.
Part D: $\nabla \mathrm{Y}_{\mathrm{t}}=\mathrm{Y}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}-1}=\mathrm{M}_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{t}}+\epsilon_{\mathrm{t}}-\left(\mathrm{M}_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{t}-1}\right)=\epsilon_{\mathrm{t}}+\mathrm{e}_{\mathrm{t}}-\mathrm{e}_{\mathrm{t}-1}$
Part E: If the random walk has no beginning, the variance is infinite, so it does not exist. If the random walk has a beginning, the variance depends on the period.

Part F: The variance of $\nabla Y_{t}=\operatorname{var}\left(\epsilon_{t}+e_{t}-e_{t-1}\right)$. The three random variables are independent, so the variance $=2 \sigma^{2}{ }_{\mathrm{e}}+\sigma^{2}{ }_{\varepsilon}$.

Part G: The covariance of ∇Y_{t} and ∇Y_{t-1} is covariance $\left(\epsilon_{t}+e_{t}-e_{t-1}, \epsilon_{t-1}+e_{t-1}-e_{t-2}\right)=-\sigma_{e}^{2}$.
Part H: The autocorrelation of $\nabla \mathrm{Y}_{\mathrm{t}}$ and $\nabla \mathrm{Y}_{\mathrm{t}-1}\left(\rho_{1}\right)$ is $-\sigma^{2}{ }_{\mathrm{e}} / 2 \sigma^{2}{ }_{\mathrm{e}}+\sigma^{2}{ }_{\varepsilon}=-1 /\left(2+\sigma^{2}{ }_{\varepsilon} / \sigma^{2}{ }_{\mathrm{e}}\right)$. This is equation 5.1.10 on page 90.
** Exercise 9.4: IMA(1,1) process
Each of the following time series is an $\operatorname{IMA}(1,1)$ process. What is the value of θ for each time series?
A. $Y_{t}=Y_{t-1}+e_{t}-0.4 e_{t-1}$
B. $Y_{t}=Y_{t-1}-e_{t}-0.4 e_{t-1}$
C. $Y_{t}=Y_{t-1}+0.4 e_{t}-0.4 e_{t-1}$
D. $Y_{t}=Y_{t-1}-0.4 e_{t}-0.4 e_{t-1}$

Part A: The first difference of an $\operatorname{IMA}(1,1)$ is an $\mathrm{MA}(1)$ process.

The first difference of this time series is $e_{t}-0.4 e_{t-1}$, which is an $\mathrm{MA}(1)$ process with $\theta=0.4$.
Part B: The first difference of this time series is $-e_{t}-0.4 e_{t-1}$. Use a change of the error term $\epsilon_{t^{\prime}}=-\epsilon_{\mathrm{t}}$ which gives a first difference of $+\mathrm{e}_{\mathrm{t}^{\prime}}+0.4 \mathrm{e}_{\mathrm{t}^{\prime}-1}$, which is an $\mathrm{MA}(1)$ process with $\theta=-0.4$.

Part C: The first difference of this time series is $0.4 e_{t}-0.4 e_{t-1}$. Use a change of the error term $\epsilon_{\mathrm{t}^{\prime}}=2.5 \epsilon_{\mathrm{t}}$ which gives a first difference of $+e_{t^{\prime}}-e_{t^{\prime}-1}$, which is an $M A(1)$ process with $\theta=1$.

Part D: The first difference of this time series is $-0.4 \mathrm{e}_{\mathrm{t}}-0.4 \mathrm{e}_{\mathrm{t}-1}$. Use a change of the error term $\epsilon_{\mathrm{t}^{\prime}}=-2.5 \epsilon_{\mathrm{t}}$ which gives a first difference of $+e_{t^{\prime}}+e_{t^{\prime}-1}$, which is an $\mathrm{MA}(1)$ process with $\theta=-1$.
(P93)
** Exercise 9.5: $\operatorname{ARI}(1,1)$ process
The time series $Y_{t}=\theta_{0}+\alpha Y_{t-1}+\beta Y_{t-2}+e_{t}$ is an $\operatorname{ARI}(1,1)$ process.
A. Write the time series in terms of $W_{t}\left(\nabla Y_{t}\right)$.
B. What is the relation of α and β ?
C. What is the value of ϕ for this $\operatorname{ARI}(1,1)$ process?
$\operatorname{Part} A: W_{t}=\nabla Y_{t}=Y_{t}-Y_{t-1}=\theta_{0}+(\alpha-1) \times Y_{t-1}+\beta Y_{t-2}+e_{t}$
Part B: If $\alpha-1=-\beta$, we can write the time series as $Y_{t}-Y_{t-1}=\theta_{0}+(-\beta) \times\left(Y_{t-1}-Y_{t-2}\right)+e_{t}$
Part C: $\phi=-\beta$
A. $Y_{t}=Y_{t-1}-(1+\phi) Y_{t-2}+e_{t}$
B. $\mathrm{Y}_{\mathrm{t}}=\mathrm{Y}_{\mathrm{t}-1}+\phi \mathrm{Y}_{\mathrm{t}-2}+\mathrm{e}_{\mathrm{t}}$
C. $Y_{t}=Y_{t-1}-\phi Y_{t-2}+e_{t}$
D. $Y_{t}=(1+\phi) Y_{t-1}-\phi Y_{t-2}+e_{t}$
E. $Y_{t}=(1+\phi) Y_{t-1}+\phi Y_{t-2}+e_{t}$
** Exercise 9.6: Time series process
A time series is $Y_{t}=\theta_{0}+1.75 Y_{t-1}-0.75 Y_{t-2}+e_{t}$ is an $\operatorname{ARI}(2,1)$ process.
A. Write the time series in terms of $W_{t}\left(\nabla Y_{t}\right)$.
B. What is the value of ϕ_{1} for this $\operatorname{ARI}(2,1)$ process?
C. What is the value of ϕ_{2} for this $\operatorname{ARI}(2,1)$ process?
$\operatorname{Part} A: W_{t}=\nabla Y_{t}=Y_{t}-Y_{t-1}=\theta_{0}+(\alpha-1) \times Y_{t-1}+\beta Y_{t-2}+e_{t}$
Part B: If $\alpha-1=-\beta$, we can write the time series as $Y_{t}-Y_{t-1}=\theta_{0}+(-\beta) \times\left(Y_{t-1}-Y_{t-2}\right)+e_{t}$
Part C: $\phi=-\beta$

