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Time Series Student Project
Pole Vault World Record

Introduction

Over the past 100 years the men’s pole vault record has steadily increased. The invention of fiberglass poles sent vaulters flying further than they ever thought possible. With the enhancement of performance in almost every sport, I am curious if it is possible to try to fit the data to a model that can accurately predict world records to come. A model might be able to predict the future for several years until a level point is hit, and a new model is needed. 

Data

I used http://en.wikipedia.org/wiki/World_Record_progression_Pole_Vault_men to collect the original data for my model. I examined the numerical data for any inconsistencies and noticed the data did not give a record every day, month or even year. Since the data is listed sporadically, I converted the date into a format of number of days since year X. Then I graphed the data to look for any strange behavior in the data. 

Graph 1:
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The large jump in graph 1 suggested to me a discontinuity in the data. Since I have 71 data points, I am comfortable removing the first 16. After removing these data points, my data looks much smoother, as seen below in graph 2.

Graph 2:

[image: image2.png]6.50

6.00

5.50
Height in
Meters

4.50

4.00

Record

U Ad
» ",

-

0 5000 10000 15000
Days from 1957

# Record





After examining my data I see that there does not appear to be any evidence of seasonality occurring throughout the data. This is expected because new world records are only made when there is a competition. So even though most track meets occur during the same seasons, there is no seasonal pattern to high records because off months do not produce any records at all. The lack of seasonality in this graph means there is no need to perform seasonality corrections. The graph has a positive linear trend. 

It is also important to note that the data is a list of records. In general, time series analysis uses data based on set periods of time; however, this data is records so all values where Yt < Yt-1 are discarded. Therefore the data is not equally spaced out periods of time. Additionally, because pole vaulting is a competitive sport, records have become less and less significant. In early years many records increase by 0.05 or 0.06, but by the end of the time series almost all increases are 0.01. 

Test of Stationarity

In order to make a model out of my time series data I need to first ensure that the data is stationary. A time series is stationary if over time its main statistical parameters (mean, standard deviation, autocorrelation) are relatively constant. From graph 2 above we can infer that our data is not yet stationary, but I will also graph a correlogram of its autocorrelation function to confirm this. Ideally the autocorrelation function will show no dependence on time, trend towards zero, and fluctuate around a constant mean, thus implying the data is stationary. Using excel I calculated the sample autocorrelation using the following formula:
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 for k =1, 2, …
Graph 3 below does not trend towards zero, thus it does not imply stationarity. This correlogram suggests further modifications should be done to our data before proceeding to create a stationary process.

Graph 3:
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First Differences

In order to create a stationary process I took the first differences of my data, where the Dt = Yt - Yt-1. Where D is the difference and Y is the original data point. Graph 4 below does not show the linear positive trend that graph 2 clearly demonstrated. This suggests we should continue on with this first differenced model to confirm stationarity.

Graph 4:
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Ideally, the ARIMA process eliminates everything but an error term, so we check that the data produces white noise random fluctuations. We observe from graph 4 random fluctuations, therefore we can be fairly confident that it is white noise.
Next I graphed the correlogram of the first differences. Graph 5 shows the autocorrelation functions do not appear to be dependent on time. We also notice that the graph shows both positive and negative values centered around zero, indicating stationarity. 
Graph 5:
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The large spread of the data points in the correlogram of first differences suggest that a different model may be needed to analyze this data. Ideally the autocorrelations would be within a range of 1/n^.5, or between positive and negative 0.13484. For the purposes of this project I will continue with the most simplistic assumptions possible for a good fit. This simplistic assumption is supported by the graph below that suggests that we might be over differencing the data and actually reducing its quality if we use second differences.

Graph 6:
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The correlogram corresponding to the second difference data suggests that this could possibly be a good fit. The values fluctuate between positive and negative values around the mean of zero.

Graph 7
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Model

 I used the Excel regression analysis tool to fit my data to ARIMA(1,1,0), ARIMA(2,1,0), and ARIMA(3,1,0) models. The formulas for these models are: 
ARIMA(1,1,0): Yt = φYt-1 + et
ARIMA(2,1,0): Yt = φ1Yt-1 + φ2Yt-2 + et
ARIMA(3,1,0): Yt = φ1Yt-1 + φ2Yt-2 + φ3Yt-3 + et
ARIMA(1,2,0): Yt = φYt-2 + et
I did not test any models using the moving average component because the moving average model assumes that there is only a finite response in current data to previous data. Pole vault world records will be positively increasing, from the first record on. Therefore there is an infinite response to previous data points as an autoregressive model suggests. If the pole vault world records showed signs of seasonality, then using a moving average would be appropriate to remove it.
The following equations are the results of my model runs using excels add-in regression analysis function: 

	Model 
	Equation

	ARIMA(1,1,0)
	 Yt =  0.0161 + 0.3458Yt-1 + et 

	ARIMA(2,1,0)
	 Yt =  0.0129+ .263Yt-1 + .2156Yt-2 + et

	ARIMA(3,1,0)
	 Yt = 0.00858 +  0.19897Yt-1 + 0.1719Yt-2 + 0.2455Yt-3 + et 

	ARIMA(1,2,0)
	 Yt = 0.012687 + 0.74167Yt-2 + et


First we notice that each model has a coefficient that is less than 1 and |φp|<1 for p = 1, 2, 3 in each of the above models. These are two of the requirements that confirm our previous assumption of stationarity by differencing the data.
Next we try to select the best model. Individual run summaries can be found in the Appendix items 1-4. To decide on which model fits the data best, I used some simple tests. First I tested the serial correlation using the Durbin-Watson Statistic. According to the Durbin-Watson test, a value of 2 indications no serial correlation.
	Model
	 Durbin-Watson Statistic 

	ARIMA(1,1,0)
	                                            2.12 

	ARIMA(2,1,0)
	                                            2.05 

	ARIMA(3,1,0)
	                                            2.13 

	ARIMA(1,2,0)
	                                            1.75 


The chart above shows the AR(1,2,0) model is the furthest from 2, so we will not proceed with this model. Secondly, this test statistic shows little difference between the ARIMA(1,1,0) model and the AR(3,1,0) model, so we will eliminate the latter model that has two extra variables without significant model improvement.

Next I will examine the R-squared value for the remaining two equations. These values were pulled from the Summary Output data in Appendix 1 and 2. Both models produce very poor R-squared values. The values also show that adding the additional variable does not greatly improve the model. From this we infer making our model dependent on an additional variable is not justifiable.
	Model
	 Adjusted R- Squared 

	ARIMA(1,1,0)
	                                            0.10 

	ARIMA(2,1,0)
	                                            0.11 


Conclusion

After examining the data for pole vault records, we noticed linearly positive trends. Taking first differences removed this trend from our data and made it stationary so we could attempt to model the data. No seasonality was present, so we did not need to remove it. The first difference model Yt =  0.0161 + 0.3458Yt-1 + et was the best fit of the time series models tested. The Durbin-Watson test statistic was close to 2 for this model and the adjusted R-squared value was comparable to more complicated models.

Although this model appears to be the best fit, the support for this model is weak and alternative methods (non- time series) of modeling are recommended. Time series analysis may not be the best approach for this data because the data is not equally spaced out over set period’s time. Additionally, because pole vaulting is a competitive sport, records have become less and less significant. One could just as easily guess the next record will be set by the smallest mark measureable. 

Appendix

Item 1: Summary output for ARIMA(1,1,0) model

	SUMMARY OUTPUT
	Yt =  0.0161 + 0.3458Yt-1 + et
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Regression Statistics
	
	
	
	
	
	
	

	Multiple R
	0.340430037
	
	
	
	
	
	
	

	R Square
	0.11589261
	
	
	
	
	
	
	

	Adjusted R Square
	0.098890545
	
	
	
	
	
	
	

	Standard Error
	0.018230713
	
	
	
	
	
	
	

	Observations
	54
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	
	
	

	Regression
	1
	0.002265486
	0.002265486
	6.81638429
	0.01177436
	
	
	

	Residual
	52
	0.017282662
	0.000332359
	
	
	
	
	

	Total
	53
	0.019548148
	 
	 
	 
	
	
	

	
	
	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	Upper 95.0%

	Intercept
	0.016106333
	0.004156992
	3.874516155
	0.00030086
	0.007764718
	0.024447948
	0.00776472
	0.024447948

	Yt-1
	0.345777952
	0.132440333
	2.610820617
	0.01177436
	0.080016987
	0.611538916
	0.08001699
	0.611538916


Item 2: Summary output for ARIMA(2,1,0) model

	SUMMARY OUTPUT
	Yt =  0.0129+ .263Yt-1 + .2156Yt-2 + et
	
	
	
	

	
	
	
	
	
	
	
	
	

	Regression Statistics
	
	
	
	
	
	
	

	Multiple R
	0.386640331
	
	
	
	
	
	
	

	R Square
	0.149490745
	
	
	
	
	
	
	

	Adjusted R Square
	0.114776082
	
	
	
	
	
	
	

	Standard Error
	0.018111328
	
	
	
	
	
	
	

	Observations
	52
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	
	
	

	Regression
	2
	0.002825088
	0.00141254
	4.30627091
	0.018929388
	
	
	

	Residual
	49
	0.016072989
	0.00032802
	
	
	
	
	

	Total
	51
	0.018898077
	 
	 
	 
	
	
	

	
	
	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	Upper 95.0%

	Intercept
	0.012905143
	0.004894615
	2.63660014
	0.01118639
	0.003069046
	0.022741239
	0.003069046
	0.022741239

	Yt-1
	0.26313928
	0.139812277
	1.88208994
	0.06576967
	-0.017824005
	0.544102565
	-0.017824
	0.544102565

	Yt-2
	0.21563981
	0.140617909
	1.53351598
	0.13158069
	-0.066942452
	0.498222073
	-0.06694245
	0.498222073


Item 3: Summary output for ARIMA(3,1,0) model

	SUMMARY OUTPUT
	Yt = 0.00858 +  0.19897Yt-1 + 0.1719Yt-2 + 0.2455Yt-3 + et
	
	
	

	
	
	
	
	
	
	
	
	

	Regression Statistics
	
	
	
	
	
	
	

	Multiple R
	0.462941707
	
	
	
	
	
	
	

	R Square
	0.214315024
	
	
	
	
	
	
	

	Adjusted R Square
	0.16416492
	
	
	
	
	
	
	

	Standard Error
	0.017183214
	
	
	
	
	
	
	

	Observations
	51
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	
	
	

	Regression
	3
	0.003785392
	0.001261797
	4.27347112
	0.009510205
	
	
	

	Residual
	47
	0.013877353
	0.000295263
	
	
	
	
	

	Total
	50
	0.017662745
	 
	 
	 
	
	
	

	
	
	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	Upper 95.0%

	Intercept
	0.008586561
	0.00506668
	1.694711559
	0.09674715
	-0.001606284
	0.01877941
	-0.001606284
	0.018779406

	Yt-1
	0.198965841
	0.135796915
	1.465172022
	0.14953202
	-0.07422231
	0.47215399
	-0.07422231
	0.472153992

	Yt-2
	0.171899788
	0.137639891
	1.248909654
	0.21788295
	-0.104995952
	0.44879553
	-0.104995952
	0.448795528

	Yt-3
	0.245505319
	0.136916482
	1.793102735
	0.07939274
	-0.029935111
	0.52094575
	-0.029935111
	0.520945748


Item 4: Summary output for ARIMA(1,2,0) model

	SUMMARY OUTPUT
	Yt = 0.012687 + 0.74167Yt-2 + et
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Regression Statistics
	
	
	
	
	
	
	

	Multiple R
	0.734486002
	
	
	
	
	
	
	

	R Square
	0.539469687
	
	
	
	
	
	
	

	Adjusted R Square
	0.530259081
	
	
	
	
	
	
	

	Standard Error
	0.021453366
	
	
	
	
	
	
	

	Observations
	52
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	ANOVA
	
	
	
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F
	
	
	

	Regression
	1
	0.026956885
	0.02695689
	58.57048622
	5.73967E-10
	
	
	

	Residual
	50
	0.023012345
	0.00046025
	
	
	
	
	

	Total
	51
	0.049969231
	 
	 
	 
	
	
	

	
	
	
	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	Lower 95%
	Upper 95%
	Lower 95.0%
	Upper 95.0%

	Intercept
	0.012687282
	0.005797535
	2.18839258
	0.033340196
	0.001042591
	0.02433197
	0.001042591
	0.024331972

	Yt-1
	0.741670918
	0.096910723
	7.65313571
	5.73967E-10
	0.547020005
	0.93632183
	0.547020005
	0.93632183


