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Introduction
This analysis utilizes time series functions and manipulations to predict a website’s future traffic.  Traffic to websites is driven by content and community interaction.  If the community is self-sustaining and growing then a pattern can emerge based on a number of variables – be it time, membership, or blog articles.  In this case, the website of interest is a forum with a small blog and select content features.  There is a certain element of seasonality observed in the traffic throughout the year due to the popularity of major subject areas in certain months of the year.

Data
This particular website has a wealth of traffic info from January 2010 to August 2011.  The following table details the number of page views (traffic) per month and total members at the end of the month.
	Month
	Page Views
	Members

	January-10
	      140,257 
	        217 

	February-10
	      179,047 
	        235 

	March-10
	      164,101 
	        270 

	April-10
	      117,830 
	        287 

	May-10
	      124,026 
	        302 

	June-10
	      147,589 
	        316 

	July-10
	      223,030 
	        342 

	August-10
	      253,114 
	        391 

	September-10
	      212,127 
	        462 

	October-10
	      298,428 
	        501 

	November-10
	      320,762 
	        564 

	December-10
	      276,033 
	        645 

	January-11
	      447,580 
	        745 

	February-11
	      487,696 
	        856 

	March-11
	      483,722 
	        929 

	April-11
	      472,755 
	      1,007 

	May-11
	      761,856 
	      1,167 

	June-11
	      773,373 
	      1,263 

	July-11
	      999,683 
	      1,354 

	August-11
	      830,528 
	      1,454 


Seasonality
Whereas seasonality is carved out of many time series as a function, it will be taken out of this data based on social norms and the types of days on the calendar.  The administrator of the website has taken note that members visit the website more during weekdays.  In fact, he has observed that there is 85% more traffic on a weekday than a Saturday or Sunday.  He also finds that holidays act like weekends and there is a particular extra long lull during the weekends and days surrounding Memorial Day, July 4th, Labor Day, Halloween, Thanksgiving, Christmas, and New Years.  These times of reduced traffic, plus the carve-out for summer vacations, are multiplied together and normalized to produce a seasonality factor.
	Month
	Days
	Weekdays
	Other Days
	DayNum
	DayType
	Holiday
	Total
	Final

	Jan
	31
	21
	10
	1.019
	0.857
	0.943
	0.823
	1.013

	Feb
	28
	20
	8
	0.921
	0.873
	1.000
	0.804
	0.989

	Mar
	31
	23
	8
	1.019
	0.885
	1.000
	0.902
	1.110

	Apr
	30
	22
	8
	0.986
	0.881
	1.000
	0.869
	1.070

	May
	31
	21
	10
	1.019
	0.857
	0.944
	0.825
	1.015

	Jun
	30
	22
	8
	0.986
	0.881
	0.944
	0.821
	1.010

	Jul
	31
	22
	9
	1.019
	0.871
	0.910
	0.808
	0.994

	Aug
	31
	22
	9
	1.019
	0.871
	0.946
	0.840
	1.033

	Sep
	30
	22
	8
	0.986
	0.881
	0.944
	0.821
	1.010

	Oct
	31
	21
	10
	1.019
	0.857
	0.982
	0.857
	1.055

	Nov
	30
	22
	8
	0.986
	0.881
	0.911
	0.792
	0.975

	Dec
	31
	23
	8
	1.019
	0.885
	0.654
	0.590
	0.726


The number of days and the total portion of weekdays have a great effect on seasonality.  Note that the final, or normalized, seasonality factor takes the total seasonality factor and divides it by the average throughout the year.  This ensures that the average seasonality factor is 1.000 and there is no bias (or skew) caused by the seasonality.

Trend Analysis
In order to determine the appropriate time series used for trend, the traffic data needs to have seasonality removed.  The most optimal model or blend of several models can be picked from the following processes.
· Logistic regression

· Linear regression

· Exponential regression

· Polynomial regression

· Moving average process – MA(3)

· Autoregression process – AR(3)

The four regression models are found using the trendline information provided by Microsoft Excel’s graph functions. The official time series, MA(3) and AR(3), use three lags to smooth the data on a quarterly basis.

Logistic Regression
At first glance of our “deseasonalized” data (DeSeason), the log function appears to approach an asymptote.  It does not have a limit, but it’s growth isn’t exponential.  Instead, the lognormal function shoots up quickl (DeSeason), the log function appears to approach an asymptote.  It does not have a limit, but it’s growth isn’t exponential.  Instead, the lognormal function shoots up quickly and its growth decelerates from there.  This is not an ideal fit for our seemingly exponentially increasing data.
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The Excel fit gives a function of y = 241824ln(x) – 129112.  For our 20 months of actual data, it has an R^2 value of 0.797.  This is still a reasonable fit, but the expectation is that we will achieve better results with another model.

Linear Regression
Favored by many due to its simplistic view, linear regression is able to fit well at the tails of the data.  Its coefficient of variation may be low due to high variance in the middle of the data.
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Relative volatility increases with time.  The assumption is that the trend will increase and the recent peaks and valleys will be mitigated by a higher magnitude of volatility.  The trend line function is y = 40447x – 41913. This allows the linear fit to be a good predictor as it correlates well and has a high coefficient of variation a majority of the data.

Exponential Regression
The data appears to be exponential and with an R^2 value of 0.959 and coefficient of variation equal to 0.913, it certainly is our best model yet.
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The exponential function is y = 96773exp(0.1102x).  It appears to be the first model that had the recent downtick in traffic appear as a lesser than expected month.

Moving Average Process – MA(3)
Fitting a theoretical time series involves picking parameters.  An actuary shouldn’t just calibrate their assumptions, but rather they should determine if they are reasonable.  If we apply a moving average on three lags then the trend would suggest giving more weight to the most recent month.  Trend needs to be considered here.  This can be added as a constant, white noise, or as part of the coefficients in the MA(3) process.  The decision was made to not have white noise nor a constant added to the equation.  Logistic trend is calculated by taking the traffic from month 20, dividing that by the first month’s traffic, taking the natural log of that, and dividing by 20 for a resulting trend of 8.8% per month.  In the moving average process, one month of trend will be applied to each iteration within the process.

Without completed lags, the first three months will use the polynomial fit.  The MA(3) process used for months four onward is the following.

Y(t) = (1/3)*[Y(t-1)+Y(t-2)+Y(t-3)]*(1.088)

The data resulting from this model will be shown in the next chart.
Autoregressive Process – AR(3)
Just like the MA(3) process, the AR(3) process will use the polynomial fit for the first three months.  In the autoregressive process, the nth lag will be given n months of trend.  Unlike the MA(3) process which is generally stationary, the AR(3) process will be non-stationary which matches the trend of our data.
The AR(3) process used for months four onward is the following.

Y(t) = (1/3)*[Y(t-1)*1.088+Y(t-2)*(1.088^2)+Y(t-3)*(1.088^3)]

Both time series processes are very similar, but the AR(3) process is the one that will ultimately have more trend, be non-stationary, and have a better fit to our data.  

Choosing Models
Below is a chart that shows how each model acts during our experience period.  Above these results are figures including R^2 and coefficient of variation which have already been mentioned.
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The weights are calculated by removing the model with the lowest product of R^2 value and coefficient of variation.  Not surprisingly, this was the logistic fit.  The autoregressive process performs surprisingly well.  The mixed model then takes a weighted average of all of these.  It too, should have high values for R^2 and coefficient of variation.

Forecasting the Model
Using the mixed model, let’s forecast the data another 20 months.  Remember, for official results, seasonality has to be factored back into the results.  This will be compared to the actual data for the first 20 months.
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The y-axis the graph is skewed lognormal to allow the original data to be easily seen.  This makes it appear as if the mixed model is a linear trend. 
Conclusion
The future looks to be bright for this particular website.  However, the confidence into such a projection weakens with every month of trend.  What is the growth slows down due to market limitations?  What if there are constraints from existing members?  A key concept of the Actuarial Control Cycle is model maintenance.  Like any model, this one needs to be constantly monitored, reviewed, and recalibrated each time new data is available.
