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Spring 2011 Session
Moody’s AAA Corporate Bond Yield Time Series Model

Introduction
Corporate interest rates play a major role in determining the discount factor used to calculate a pension plans funding liability. In periods of economic downturn, interest rates are low and funding requirements are high due to the inverse relationship between interest rates and present value. On the other hand, liabilities are lower and lump sum cashouts may be more favorable when interest rates are high.

This analysis looks at Moody’s AAA Corporate Bond rates and fits a time series to the interest rates. Since pension plans tend to use high quality assets in their portfolio, I have chosen to look at AAA rated bonds instead of low quality or junk bonds.

Data

In starting this analysis, I’ve collected data on Moody’s AAA Corporate Bond rates from 1919 to 2011 using the Board of Governors of the Federal Reserve System’s database. A graph of rates is shown in Figure 1 and original data is found in the ‘Data’ tab.
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The graph of AAA Corporate Bond Rates shows three 

patterns: (1) decreases from Jan 1919 through July 1946 

fairly gradually, with small spikes in July 1920 and June 

1932; (2) increases from July 1946 to September 1981, 

with small spikes in June 1970 and November 1974, and 

exponential increase through September 1981; and, (3) 

decreases through the end of the time series, with 

numerous cycles and random movements.


Figure 1
As described in the figure, the graph of rates shows several distinct trends. Interest rates declined significantly from 1920 through 1945 as a result of the Great Depression. Stock markets crashed which made it difficult to recover from economic downturn. It wasn’t until after 1945 when the U.S. economy started to recover from the Great Depression era which can be seen by the steady increase in interest rates. From the late 1970’s through the 1980’s, it can be seen that interest rates were very volatile. This was due to OPEC oil price increase and macroeconomic policy. After this trend became steady, interest rates show a slow decrease from 1981 due to new monetary policy, and continue to decrease until today.
Figure 2 shows the correlogram of the AAA Corporate Bond rates:
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Graph 2
This correlogram shows that using all rates from 1919 to 2011 would not result in a stationary time series. The correlogram decreases through period 246, dips below zero, increases negatively through period 785, and remains stationary around zero thereafter. As a result, we need to split the data into periods to be able to work with a stationary time series.
In addition to splitting up the series into periods, we must also adjust the nominal interest rates for inflation and seasonality. Using real interest rates and adjusting for seasonality allows us to fit a better time series model, since de-trending and de-seasonalizing results in rates that can be more easily comparable at one point in time.

Since the Bureau of Labor Statistics only has seasonally adjusted Consumer Price Index (CPI) data starting from 1947, we will disregard any data prior to 1947 and determine our periods based on years for which we can de-seasonalize data.

With the aid of Graphs 1 and 2, the two time periods we will analyze will be from 11/1/969 through 9/1/1981 and 10/1/1981 through 7/1/2011. The reason we start from 1969 and not 1947 is because the trend in interest rate changes between 1947 and 1969, and it is better to have similar trends in order to model stationary periods. The graphs of the seasonally adjusted real AAA Corporate Bond rates for the two periods are shown in Figures 3 and 4 below.
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Graph 3
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Figure 

From these two graphs, we can see that the data is stagnant, but there is still some volatility. Using real interest rates will likely not result in a stationary time series and hence it is important to analyze first differences. If first differences turn out to not result in a model that fits well, we can consider second difference or logarithms of first differences.
First Differences 

The next step is to look at first differences and check for stationarity. In order to analyze the implications of this process, we will compare the correlograms of first differences from the two time periods. Looking at the graph of autocorrelations will help determine which time series is stationary. Results are shown in Figures 5 and 6. 
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Figure 5
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Figure 6
In both of these correlograms, random fluctuation around zero can be observed. However, since the fluctuation dies off and converges towards zero after a number of lags, we can infer that the second difference is a stationary process. 
We can use Bartlett’s test to confirm this hypotheses. If the autocorrelations are a true white noise process, then they should all be normally distributed with a mean of 0 and a variance of 1/n.5. We use Bartlett’s test to see what percentage of autocorrelations lie outside this interval. For Period 1, we must see how many autocorrelation figures lie outside of the confidence interval of +/- 1.96/(143).5=.164, and for Period 2, we must see how many lie outside of the confidence interval of +/-1.96/(359).5 = .103.  Looking at the data, 5% of the data points lie outside of the confidence interval for Period 1, and 6% of the data points lie outside of the confidence interval for period 2. This is small enough that we can use Bartlett’s test as support for the second differences to be a stationary process. Support for the calculation can be found on the ‘AAA Real Rates’ tab.
Model Diagnosis

The analysis above shows that since using actual data would not result in a stationary time series, we must use first differences and model an ARIMA process instead of an AR or MA process.
Correlograms for both periods show a slight geometric progression towards 0. This implies that interest rates follow an autoregressive process. Thus, we will test a few ARIMA processes and look at the Multiple R2 statistic, the Durbin-Watson statistics and the Box-Pierce Q Statistic in order to test our model’s goodness of fit. The full regression output is found on the ‘Period1Model’ tab and ‘Period2Model’ tab.
Period 1 – Fitting the Model
Yt = .0311 - .5475Yt-1
	ARIMA(1,1,0)
	 
	 
	 
	 

	 
	
	
	
	 

	Regression Statistics
	
	
	 

	Multiple R
	0.546835827
	
	
	 

	R Square
	0.299029421
	
	
	 

	Adjusted R Square
	0.294022489
	
	
	 

	Standard Error
	3.004420309
	
	
	 

	Observations
	142
	
	
	 

	 
	
	
	
	 

	ANOVA
	 
	 
	 
	 

	 
	df
	F
	Significance F
	 

	Regression
	1
	59.72307574
	1.91571E-12
	 

	Residual
	140
	
	
	 

	Total
	141
	
	
	 

	 
	
	
	
	 

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	0.03111303
	0.252134163
	0.123398707
	0.901968

	0.213152222
	-0.547498579
	0.070845442
	-7.728070635
	1.92E-12

	 
	 
	
	
	 

	Durbin-Watson Statistic
	2.1842
	
	
	 

	Box-Pierce Q Statistic
	55.5189
	
	
	 

	Chi-Squared Statistic
	85.5270
	 
	 
	 


Yt = .0307 - .6399Yt-1- .1705Yt-2
	ARIMA(2,1,0)
	 
	 
	 
	 

	 
	
	
	
	 

	Regression Statistics
	
	
	 

	Multiple R
	0.56496307
	
	
	 

	R Square
	0.31918327
	
	
	 

	Adjusted R Square
	0.309316361
	
	
	 

	Standard Error
	2.982181479
	
	
	 

	Observations
	141
	
	
	 

	 
	
	
	
	 

	ANOVA
	 
	 
	 
	 

	 
	df
	F
	Significance F
	 

	Regression
	2
	32.34886087
	3.0136E-12
	 

	Residual
	138
	
	
	 

	Total
	140
	
	
	 

	 
	
	
	
	 

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	0.03070107
	0.251156141
	0.122238978
	0.902888

	0.053479052
	-0.639917084
	0.083895832
	-7.627519352
	3.52E-12

	0.213152222
	-0.170450404
	0.084390811
	-2.019774452
	0.045343

	 
	 
	
	
	 

	Durbin-Watson Statistic
	2.0518
	
	
	 

	Box-Pierce Q Statistic
	59.2246
	
	
	 

	Chi-Squared Statistic
	84.4179
	 
	 
	 


· According to the Multiple R2 statistic, 55% of ARIMA(1,1,0) and 56% of ARIMA (2,1,0) is explained by linear trend. This is low, but does not necessarily mean the models are poor choices. The change in the statistic from the ARIMA(1,1,0) model to the ARIMA(2,1,0) model is not material.
· Both models have a Durbin-Watson statistic close to 2, which means there is no serial autocorrelation. This means that the residuals are independent of each other and could be an indication of a good fit.
· In both models, the Box-Pierce Q Statistic is less than the Chi-Squared Statistic, which means we do not reject the null hypothesis that the residuals are a white noise process. A lag of 71 is used for these statistics, which seems reasonable as this is the half way point.

Results

Both models seem to be good fits and there is no indication of one being more favorable than the other. The Multiple R2 statistic does not increase significantly from ARIMA(1,1,0) to ARIMA(2,1,0).  In order to adhere to the principal of parsimony, we choose the model with the least number of parameters. In conclusion, AAA Corporate Bond Rates for Period 1 can be measured by an ARIMA(1,1,0) model.
Period 2 – Fitting the Model

Yt = -.032 - .1547Yt-1
	ARIMA(1,1,0)
	 
	 
	 
	 

	 
	
	
	
	 

	Regression Statistics
	
	
	 

	Multiple R
	0.154450614
	
	
	 

	R Square
	0.023854992
	
	
	 

	Adjusted R Square
	0.021105288
	
	
	 

	Standard Error
	3.643446813
	
	
	 

	Observations
	357
	
	
	 

	 
	
	
	
	 

	ANOVA
	 
	 
	 
	 

	 
	df
	F
	Significance F
	 

	Regression
	1
	8.675475624
	0.003437942
	 

	Residual
	355
	
	
	 

	Total
	356
	4827.684539
	
	 

	 
	
	
	
	 

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.031965908
	0.192833085
	-0.165769833
	0.868432452

	-2.066482918
	-0.154652085
	0.052506024
	-2.945416036
	0.003437942

	 
	 
	
	
	 

	Durbin-Watson Statistic
	2.0899
	
	
	 

	Box-Pierce Q Statistic
	292.6420
	
	
	 

	Chi-Squared Statistic
	201.4999
	 
	 
	 


Yt = -.0289 - .2046Yt-1- .353Yt-2
	ARIMA(2,1,0)
	 
	 
	 
	 

	 
	
	
	
	 

	Regression Statistics
	
	
	 

	Multiple R
	0.379578412
	
	
	 

	R Square
	0.144079771
	
	
	 

	Adjusted R Square
	0.139230365
	
	
	 

	Standard Error
	3.419163936
	
	
	 

	Observations
	356
	
	
	 

	 
	
	
	
	 

	ANOVA
	 
	 
	 
	 

	 
	df
	MS
	F
	 

	Regression
	2
	347.3395818
	29.71080568
	 

	Residual
	353
	11.69068202
	
	 

	Total
	355
	
	
	 

	 
	
	
	
	 

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.028893187
	0.181215881
	-0.159440702
	0.87341286

	8.247256374
	-0.204635517
	0.050169507
	-4.078882346
	5.59747E-05

	-2.066482918
	-0.353033464
	0.049940109
	-7.06913681
	8.39178E-12

	 
	 
	
	
	 

	Durbin-Watson Statistic
	2.1106
	
	
	 

	Box-Pierce Q Statistic
	185.1598
	
	
	 

	Chi-Squared Statistic
	201.4999
	 
	 
	 


Yt = -.0421 - .2614Yt-1- .393Yt-2- .1654Yt-3
	ARIMA(3,1,0)
	 
	 
	 
	 

	 
	
	
	
	 

	Regression Statistics
	
	
	 

	Multiple R
	0.412493822
	
	
	 

	R Square
	0.170151153
	
	
	 

	Adjusted R Square
	0.163058428
	
	
	 

	Standard Error
	3.375524331
	
	
	 

	Observations
	355
	
	
	 

	 
	
	
	
	 

	ANOVA
	
	
	
	 

	 
	df
	F
	Significance F
	 

	Regression
	3
	23.98953136
	3.8119E-14
	 

	Residual
	351
	
	
	 

	Total
	354
	 
	 
	 

	 
	
	
	
	 

	 
	Coefficients
	Standard Error
	t Stat
	P-value

	Intercept
	-0.042069365
	0.179159293
	-0.234815423
	0.814488919

	-2.519565046
	-0.261423204
	0.052856827
	-4.945873991
	1.17761E-06

	8.247256374
	-0.392994236
	0.050758774
	-7.742390249
	1.05317E-13

	-2.066482918
	-0.16543987
	0.052680864
	-3.1404168
	0.001830294

	 
	
	
	
	 

	Durbin-Watson Statistic
	2.0448
	
	
	 

	Box-Pierce Q Statistic
	170.7262
	
	
	 

	Chi-Squared Statistic
	201.4999
	 
	 
	 


· According to the Multiple R2 statistic, 15% of ARIMA(1,1,0), 38% of ARIMA (2,1,0) and 41% of ARIMA(3,1,0) is explained by linear trend. The significant increase from the ARIMA(1,1,0) to the ARIMA(2,1,0) process shows that an ARIMA process with an order greater than 1 is preferable. The change in the statistic from the ARIMA(2,1,0) model to the ARIMA(3,1,0) model is not material.
· All three models have a Durbin-Watson statistic close to 2, which means there is no serial autocorrelation. This means that the residuals are independent of each other and could be an indication of a good fit.

· In the ARIMA(1,1,0) model, the Box-Pierce Q Statistic is greater than the Chi-squared statistic, which means we reject the null hypothesis that the residuals are a white noise process. However, since the Box-Pierce Q Statistic is less than the Chi-Squared statistic for the ARIMA(2,1,0) process and the ARIMA(3,1,0) process, a model with an order greater than 1 is a better fit. A lag of 177 is used for these statistics, which seems reasonable as this is the half way point.
Results

For Period 2, an ARIMA(1,1,0) does not fit well due to the Durbin-Watson statistic. Looking beyond the Durbin-Watson statistic, the Multiple R2 statistic does not increase significantly from ARIMA(2,1,0) to ARIMA(3,1,0).  In picking between the ARIMA(2,1,0) model and the ARIMA(3,1,0) model, we choose the ARIMA(2,1,0) model due to the principle of parsimony. 

Conclusion

Fitting one time series to AAA Corporate Bond rates that range over a long period of time is difficult due to different trends and interest rate volatility over certain periods. The above analysis shows that a time series for a series of interest rates can be modeled by two different ARIMA processes for a better fit.
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