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Time Series Student Project

Summer 2011

United States Air Carrier Traffic Time Series Model
Introduction
The goal of this student project is to model air carrier traffic using the techniques I learned in the Time Series course.  At a first glance this series seems to have a clear pattern which I hope would make it suitable topic for this exercise.
Data
The data series to be examined is the Revenue Passenger Enplanements Series from the Bureau of Transportation Statistics (http://www.bts.gov/).   It contains monthly U.S. air carrier traffic for both domestic and international flights from Jan 1996 to Jun 2011.  Below is a plot of the initial data series:
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Note that around data point 70 there is a spike downward, which reflects the sudden drop in air carrier traffic after the event of 9/11.  After examining the ACF and PACF of the series and its difference series (not shown here), I decided to use only points after Jan 2002 to more accurately model the time series.  A plot of the truncated series is shown below:
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Model Specification
As the first step of model specification, I looked at the ACF graph of the series:
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The ACF graph shows strong seasonality at lag 12 (which I expected and is apparent from looking at the series plot).  The seasonality can be removed by a seasonal difference.  Note that there is a general upward trend in the time series, so a first difference is also needed to make the series stationary.  The following is a plot of the series after both first difference and seasonal difference:
[image: image4.png]0007

T T
0002 0

(z1 =By '(oyes Liyp)yp

0002~

0007

102

78 84

72

42

18 24 30

12

Index




The series now appear to jump around 0, has constant variance, and without any apparent pattern.  So a first difference and a seasonal difference is enough to make the series stationary.  Next the ACF and PACF is considered to determine the type of model to use.
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The sample ACF graph suggests a AR(1) component as the autocorrelation gradually declines to zero as lag increases, the alternating pattern between positive and negative values suggests a negative φ.
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The partial ACF cuts off after lag 1 so again the possibility of AR(1) stands out.  But before coming to a conclusion, the EACF is examined:
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The triangle of zeroes appears to start from AR(1) and MA(0), which again confirms the selection of a AR(1) model.  So with the first difference and seasonal difference, the selected model would be ARIMA(1,1,0)x(1,1,0)12
The equation is:
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 Yt-1 + et
Model Fitting
Model fitting is again done in R which gives the maximum likelihood estimates and standard errors for the ARIMA(1,1,0)x(1,1,0)12 model:

[image: image12.png]Call:

arima(x = Traffic, order = c(1, 1, 0), seasonal = list(order = c(1, 1, 0), period = 12))
Coefficients:
ar1 sar1
-0.4715 -0.3627
s.e. 0.0876  0.0957

sigma~? estimated as 1911981

log likelinood = -874.7, aic = 1753.4




Model Diagnostics

To check the quality of the model, first the plot of the residuals is examined:
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Even though there looks to be a few outliers, but the plot does not indicate any irregularities with the model.  Also looking at the ACF of residuals:
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The sample ACF of the residuals shows that there is no significant correlation within the residuals, which confirms the selected model as adequately representing the autocorrelation in the series.  The Ljung-Box test gives a p-value of 82%, further strengthening our case.

[image: image15.emf]Lag 1 2 3 4 5 6 7 8 9 10

Residual ACF 0.044   0.071   0.064 -  0.033 -  0.101 -  0.102   0.019   0.018   0.095   0.001  

Q* = 5.18     p-value 81.8%


Last but not least, the normality of the residuals is examined, with a QQ-normal plot:

[image: image16.png]Sample Quantiles

Normal Q-Q Plot

Theoretical Quantiles




Here the tail seems to behave strangely and normality of residuals might be breached.  The Shapiro-Wilk test of normality has a test statistic of W=0.9802 and p-value of 0.09, so normality is not rejected at the 5% significance level but rejected at the 10% significance level.  After further investigation, transforming the data with logarithm produce very similar results but a higher p-value of 0.28, graphs are reproduced below but as they are very similar to the ones above I am not going to comment on them.
ARIMA(1,1,0)x(1,1,0)12 model with log(Y):
New Equation: 
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Simple TS Plot of log(Y):
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After the differencing:
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Sample ACF:
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Sample PACF:

[image: image24.png]Partial ACF

0.3 02 0.1 0.0 0.1 02

04

Series diff(diff(ITraffic), lag = 12)

Lag

15

18





EACF:
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Model Fitting:

[image: image26.png]Call:
arima(x = 1Traffic, order = c(1, 1, 0), seasonal = list(order = c(1, 1, 0),
period = 12))

Coefficients:
ar1 sar1

-0.4850 -0.3722

s.e.  0.0266  0.0987

sigma”2 estimated as 0.0005991: log likelihood = 230.37, aic = -456.73




Residuals Plot:
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Residuals ACF:
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Ljung-Box Test:
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QQ-normal plot:
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Shapiro-Wilk Test:
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A final illustration is to compare actual Y values against a one-step ahead forecast, the results are shown below:
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Although not perfect, the results are satisfactory.
Conclusion

The model diagnostics indicates that the model choice of log-transformed ARIMA(1,1,0)x(1,1,0)12 adequately represents the data, while remain relatively simple, and thus adhering to the principle of parsimony.  The log-transformation in the middle of the project could seem awkward as apparently it is done for no particular reason but to pass the normality test.  But it can be argued that since air traffic is expected to grow in proportion to population growth, and that natural log (exponential growth) is often related to population growth; hence it is actually reasonable to log-transform the data.
