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Time Series Project
Total Energy Consumption in China
Introduction
News said “China's energy use has more than doubled over the last decade to overtake the United States as the world's biggest user, according to preliminary data from the International Energy Agency.” China consumed 3066 million tonnes of coal equivalent (Mtce) in 2009. Some experts maintain that China should control the energy consumption within 3800 Mtce by 2015.
This project proposes an energy consumption predication based on an ARIMA model. We obtain the stationary series after log-transformation and first difference. The subset ARIMA(1,1,3) model is chosen through comparing some information criteria among the potential models. Then it is proved that the residuals are independent white noise series. Finally, we predict China’s energy consumption in 2015 will reach 4437 Mtce without carrying out energy saving plan.
Data
The original data are from Statistical Yearbook of China, which can also be found at the official website of National Bureau of Statistics of China. The data exhibit 57 years of total energy consumptions from 1953 to 2009. (Refer to http://www.stats.gov.cn/tjsj/ndsj/)
Model Specification
Figure 1 roughly displays the exponential growth. The EC series is obviously non-stationary. The transformations and / or differences need be performed to achieve stationarity.
[image: image1.emf]Figure 1 China's Energy Consumption: 1953 - 2009
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After log-transformation, the Log(EC) series in Figure 2 still exhibit a linear time trend. Thus, we might then want to take first difference.
[image: image2.emf]Figure 2 Plot of Log(EC)
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In Figure 3, the first difference of Log(CE) series looks much more stationary when compared with the original time series shown in Figure 1. Stationarity can also be proved by ADF unit root test.
[image: image3.emf]Figure 3 Plot of First Difference of Log(EC)
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In Table 1, the statistic of the ADF test added a trend and an intercept for the Log(EC) series becomes -4.4527 with p-value equal to 5.682e-06. Hence, there is strong evidence that the Log(EC) series is linear-trend non-stationary. After first difference, the Diff(Log(EC)) series is significantly stationary and has an intercept.
Table 1 Unit Root Test
	Series
	ADF
test type
	Lag

selection
	Value of

test-statistic
	Critical values for test statistics
	p-value
	Result

	
	
	
	
	1pct
	5pct
	10pct
	
	

	Log(EC)
	Trend
	AIC
	-4.4527
	-4.04
	-3.45
	-3.15
	5.682e-06
	Non-stationary

	Diff(Log(EC))
	Drift
	AIC
	-4.2981
	-3.51
	-2.89
	-2.58
	0.0001102
	Stationary


Figure 4 shows the sample ACF and PACF plots of the Diff(Log(EC)) series. The values at lag 1 and 3 are significant in both the plots. Preliminary judgments are made that the ARMA models with p≤3 and q≤3 will possibly be modeled to fit the Diff(Log(EC)) series. Figure 5 shows the sample EACF table for the Diff(Log(EC)) series. This table suggests an ARMA model with p = 1 and q = 3. We have to wait until we get further along in the model fitting process to see which model is most appropriate for the Diff(Log(EC)) series.
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Figure 4(a) Sample ACF of Diff(Log(EC))
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Figure 4(b) Sample PACF of Diff(Log(EC))


Figure 5 Sample EACF Table for Diff(Log(EC))
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Model Fitting

We attempt to fit the series using all models with p≤3 and q≤3 and choose most appropriate one through comparing some information criteria.
Table 2 Estimation Results of ARIMA Models Based on Log(EC)
	Model
	sigma^2
	log likelihood
	AIC
	AICc
	BIC

	order=c(1,1,3)
	0.008394
	52.63
	-95.27
	-93.55
	-83.12

	order=c(1,1,2)
	0.009574
	50.07
	-92.13
	-90.93
	-82.01

	order=c(1,1,1)
	0.01277
	42.55
	-79.1
	-78.32
	-71

	order=c(2,1,3)
	0.008373
	52.75
	-93.5
	-91.17
	-79.32

	order=c(3,1,3)
	0.008029
	53.62
	-93.25
	-90.18
	-77.04

	order=c(1,1,3),fixed=c(NA,0,NA,NA,NA)
	0.008837
	52
	-96
	-94.29
	-83.85

	order=c(1,1,3),fixed=c(NA,NA,0,NA,NA)
	0.008894
	51.88
	-95.75
	-94.04
	-83.6

	order=c(1,1,3),fixed=c(NA,0,0,NA,NA)
	0.00899
	51.72
	-97.44
	-95.72
	-85.29


Based on Table 2, we choose the subset ARIMA(1,1,3) model which has smallest AIC, AICc and BIC. It has only 3 parameters to be estimated that meets the principle of parsimony. The parameters are calculated by R function ‘arima’. The default method is to use conditional-sum-of-squares to find starting values, then maximum likelihood.
[image: image6.png]VLog(EC), = 0.0666 + 0.4922VLog(EC),_, + e, — 0.6043e,_,




Model Diagnostics
In Figure 6, we compare the fitted series with the actual one. The model looks good to fit the actual series.
[image: image7.emf]Figure 6 The Time Series of Actural vs Fitted
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Figure 7 reports the portmanteau test. The horizontal dashed line at 5% helps judge the size of the p-values. The top figure there is the time series plot of the standardized residuals. Except for only an outlier, the plot shows no particular pattern. The middle figure is the ACF plot of the standardized residuals. It suggests that the residual autocorrelations of the first 15 lags are insignificant. The bottom figure is p-values for the Ljung-Box test statistic. It is incorrect because the degrees of freedom used to calculate the p-values are lag instead of lag - (p+q).
(Refer to http://www.stat.pitt.edu/stoffer/tsa2/Rissues.htm)
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Figure 7 Diagnostic Display for ARIMA(1,1,3) Model of Log(EC)


Figure 8 displays the QQ plot of the standardized residuals. Here the extreme values look suspect. Because the sample is small (n = 57), outliers do not indicate cause for alarm.
In summary, it can be concluded that the residuals are independent white noise series. That is, the subset ARIMA(1,1,3) model provides a good fit to the Log(EC) series.
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Figure 8 QQ Plot: Residuals from ARIMA(1,1,3) Model for Log(EC)
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Forecasts
 [image: image10.emf]Figure 9 Forcested EC: 2010 - 2015
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In Figure 9, we predict that the expected energy consumption will increase to 4437 Mtce, if China doesn’t carry out the energy saving plan.
Conclusions
This project includes three steps: In the model specification process, we take the log-transformation and then first difference to make the original series stationary. According to sample ACF, PACF and EACF, the parameter p and q may be not more than lag 3. In the model fitting process, we choose the subset ARIMA(1,1,3) model using Try and Error Method. In the model diagnostics process, we testify that the residuals are independent white noise series. We make a conclusion that the subset ARIMA(1,1,3) is the best fit to Log(EC). It can help us to predict short-term China’s energy consumption accurately.
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