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Projection of Gas Prices

Introduction

Over the past few years, the fluctuations in, and overall rise of, gas prices has been a great concern to many Americans. People have had to adjust to the higher gas prices, and also to the greater uncertainty of what gas prices might be tomorrow, next week, next month. Being able to predict future gas prices through regression analysis and modeling would help reduce the stress caused by unknown future gas prices, and help people better understand the trends that gas prices exhibit. This project uses historical gas prices to build an ARIMA model that can be used to project future gas prices.
Data

The data for this project came from the following website: 

http://www.economagic.com/em-cgi/data.exe/doewkly/day-mg_rco_us
The monthly gas prices from August 1990 to September 2010 are as follows:
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Test of Stationarity

Before developing the ARIMA model, the data needs to be tested for stationarity. A process is considered to be a stationary process if its statistical parameters, such as mean and standard deviation, do not change over time. Another parameter that must not change depending on time is the autocorrelation. In order to test our process for stationarity, we will look at the autocorrelation function and examine its dependence on time.
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The autocorrelation function shows a strong linear relationship for the first 316 lags, after which it drops below zero. It continues to decline for a short period, and then begins to incline until it is almost zero. The autocorrelation function for our process shows a dependence on time, indicating that it is not a stationary process.

First Differences

Since we have determined that the original data is not stationary, we analyze the first differences of the data. A plot of the first differences is shown below.
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The plot of first differences displays less trend than the original series. Below is the correlelogram of the first differences to further test for stationarity.
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The autocorrelation function of the first differences does not indicate a dependence on time. It displays random fluctuations of both positive and negative values, centered on zero. This indicates a stationary process. However, additional testing will be done to confirm this observation.
Bartlett’s test is performed in order to further test for stationarity of the first differences of the gas price data. Bartlett’s test states that if a process is white noise, approximately only five percent of the autocorrelation data points will lie out side of the 95% confidence interval centered on zero. The approximate standard deviation of the process is the reciprocal of the square root of the number of terms. In our process we have the following parameters:
σ = 1/√n = 1/√1044 = 0.03095

95% CI = ±1.96*σ = ±1.96*0.03095=± 0.06066

Adding the confidence interval to our correlogram of first differences, we can see that 84 of the 1041 observations fall outside of the interval. This is equivalent to 8% and thus the first differences are not stationary.
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Second Differences

Since the first differences are not stationary, we take the second differences of the data and determine if they are stationary. A plot of the second differences is shown below.
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The autocorrelation if the second differences, with the 95% confidence interval for Bartlett’s test is shown below. 
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For the test, we have the following parameters:
σ = 1/√n = 1/√1044 = 0.03095

95% CI = ±1.96*σ = ±1.96*0.03095=± 0.06066

In the correlogram, we can see that 36 of the 1039 observations fall outside of the interval. This is equivalent to 3.5% and thus the second differences are stationary. 
Model Fitting

Now that we have determined stationarity using the second differences, we will fit our data to various models. We will use the Excel regression analysis tool to fit our data to an ARIMA(1,1,0) model, ARIMA(2,1,0) model and an ARIMA(3,1,0) model. The resulting model parameters are as follows.

ARIMA(1,1,0) with Original Data
Y(t)=0.0035+0.999Y(t-1)
	Regression Statistics
	
	
	
	

	Multiple R
	0.997933301
	
	
	
	

	R Square
	0.995870873
	
	
	
	

	Adjusted R Square
	0.995866907
	
	
	
	

	Standard Error
	0.045668644
	
	
	
	

	Observations
	1043
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	1
	523.6387254
	523.6387254
	251070.4076
	0

	Residual
	1041
	2.171135652
	0.002085625
	
	

	Total
	1042
	525.8098611
	 
	 
	 

	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	

	Intercept
	0.003487898
	0.003565259
	0.978301287
	0.328152624
	

	Y(t-1)
	0.998738242
	0.001993214
	501.0692643
	0
	


The Durbin Watson test statistic for the residuals of this regression was calculated to be 1.006, indicating positive serial correlation. In addition, from our earlier tests, we know that the original data set is not stationary. So this ARIMA(1,1,0) model is not a good fit for our data, despite the fact that the resulting formula is a very good fit to the actual data, as shown below. 
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ARIMA(1,1,0) with First Differences
w(t)=0.0006+0.4959w(t-1)
	Regression Statistics
	
	
	
	

	Multiple R
	0.496037319
	
	
	
	

	R Square
	0.246053022
	
	
	
	

	Adjusted R Square
	0.245328073
	
	
	
	

	Standard Error
	0.039655543
	
	
	
	

	Observations
	1042
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	1
	0.533739123
	0.533739123
	339.4073454
	8.1989E-66

	Residual
	1040
	1.635464567
	0.001572562
	
	

	Total
	1041
	2.16920369
	 
	 
	 

	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	

	Intercept
	0.000646104
	0.001229106
	0.525669848
	0.599229677
	

	w(t-1)
	0.495872721
	0.026915943
	18.4230113
	8.1989E-66
	


The Durbin Watson test statistic for the residuals of this regression on the first differences of the data was calculated to be 2.123. This is quite close to 2, and so there is only a small amount of (negative) serial correlation. This is consistent with the results from Bartlett’s test, which indicated that the first differences are not stationary (but only slightly).

ARIMA(1,1,0) with Second Differences
w(t)=-0.00003-0.347w(t-1)
	Regression Statistics
	
	
	
	

	Multiple R
	0.347116895
	
	
	
	

	R Square
	0.120490139
	
	
	
	

	Adjusted R Square
	0.119644456
	
	
	
	

	Standard Error
	0.042987268
	
	
	
	

	Observations
	1042
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	1
	0.263283604
	0.263283604
	142.476793
	7.16182E-31

	Residual
	1040
	1.921821388
	0.001847905
	
	

	Total
	1041
	2.185104991
	 
	 
	 

	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	

	Intercept
	-2.67554E-05
	0.001331701
	-0.02009117
	0.983974498
	

	w(t-1)
	-0.346956847
	0.029067213
	-11.93636431
	7.16182E-31
	


The Durbin Watson test statistic for the residuals of this regression on the first differences of the data was calculated to be 2.186. This is quite close to 2, and so there is only a small amount of (negative) serial correlation. Despite the low R-squared of this model, we know that the second differences are stationary, and so they should be used to create a model for the gas price data.
ARIMA(2,1,0) with Second Differences
w(t)=-0.00004-0.44w(t-1)-.268w(t-2)
	Regression Statistics
	
	
	
	

	Multiple R
	0.428789965
	
	
	
	

	R Square
	0.183860834
	
	
	
	

	Adjusted R Square
	0.182288312
	
	
	
	

	Standard Error
	0.041447924
	
	
	
	

	Observations
	1041
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	2
	0.401724139
	0.200862069
	116.920958
	1.60557E-46

	Residual
	1038
	1.783211765
	0.00171793
	
	

	Total
	1040
	2.184935904
	 
	 
	 

	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	

	Intercept
	-3.50013E-05
	0.001284629
	-0.027246246
	0.978268568
	

	w(t-1)
	-0.440229536
	0.029901436
	-14.72268882
	1.06397E-44
	

	w(t-2)
	-0.268457371
	0.029891863
	-8.98095139
	1.2364E-18
	


The ARIMA(2,1,0) has a higher R-squared value than the ARIMA(1,1,0) model using second differences, so it seems to be a better fit to the data. In addition, this model has lower P-values than the ARIMA(1,1,0) model. Therefore, I would recommend using the ARIMA(2,1,0) (using second differences) as the model to project future gas prices.
