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Time Series Analysis of Lake Lewisville Elevation 
 

Introduction 

 

This project will attempt to fit an ARIMA model to the time series of the daily elevation of Lake 

Lewisville.  I am an avid boater and spend most of the spring, summer and fall days, when I’m 

not studying of course, on the lake.  This also depends on the weather and lake levels and in my 

experience, I have seen lake levels vary seasonally as well as from year to year.  Lake levels do 

not normally change drastically from one day to the next, but changes do occur, so this project 

will try to determine how the water elevation for any given day relates to past elevation. 

 

Data 

 

Data of elevation of Lake Lewisville was obtained from: 

http://www.swf-wc.usace.army.mil/cgi-bin/rcshtml.pl?page=Reports 

The data gathered consists of daily evaluations of lake elevation from 1960 to 2010, of which 

only 1960 – 1986 was used for the analysis and model build and produced over 9800 data points.  

The reason I selected this older data set is because there was a permanent increase of the 

conservation pool elevation from 515 feet above mean sea level to the current 522 feet above 

mean sea level.  I didn’t want this to be seen as a trend in the data and I didn’t know how to 

otherwise adjust for this.  I wanted to attempt an adjustment by adding 7 feet to my historic data 

if it was before the known date of change; however, I didn’t know the exact date of change, but I 

do know the change occurred in 1988 due to the construction of a feeder lake by the name of Ray 

Roberts.  Also, note that there was one adjustment made to a single data point for 12/13/1976.  

The original data source had 519.79, but this appears to be a typo based on the surrounding data 

and has been manually changed to be 510.79. 

 

The graph below shows the lake elevation from 1960 – 1986. 
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Clearly, there is a strong season pattern to the data.  Although it is not always consistent from 

year to year, it can be seen that water elevation is normally highest just before the beginning of 

summer and gradually declines during the hot summer months.  Lake levels historically regain a 

bit higher elevation during the fall, try to maintain during the winter and then again increases in 

elevation for a peak in the spring.  This seasonality is to be expected for many reasons, one of 

which is that this lake serves as the principal water source for the city of Dallas, which 

presumably uses more water during the summer months.  In addition, evaporation of the lake’s 

water is high during the summer due to the lack of clouds/rain and extreme temperatures.  Based 

on this knowledge, I will not examine the autocorrelation function for the raw data, but proceed 

to de-seasonalize the series. 

 

Seasonal Adjustment 

 

Although the seasonality of our data provides useful information for predicting the elevation for 

any given day, it obscures the relationship between elevation for consecutive days.  In order to 

describe this relationship and construct an ARIMA model for our time series, we must remove 

the seasonal variation. 

 

Before I de-seasonalized the data, I smoothed the data.  The raw data, as seen above, formed a 

jagged up and down curve for some years and remained fairly flat for some years, but had the 

below general shape.  A multi-year centered moving average was used.  I concluded with an 

average of the daily elevation over 135 days (27  X  5) – a 27 year average of the day combined 

with two preceding and two following days.  For example, the smoothed elevation for August 

29
th
 is the average of the temperatures from August 27 – 31 for 1960 – 1986. 

 

Smoothed Daily Lake Elevation
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Please note, I included 2/29 in my data, but adjusted for this by ignoring this day in my moving 

average (ie, for 2/28, I average the 26
th
, 27

th
, 28

th
 of February with the 1

st
 and 2

nd
 of March).  I 

then used a straight average of the moving average 2/28 and 3/1 for 2/29. 

 

After I had smoothed daily elevations, I computed the seasonally adjusted elevation for each day 

by subtracting the day’s elevation by the centered moving average corresponding to that day.  I 



used an additive adjustment instead of a multiplicative adjustment because I wanted to assume 

the variance of the error term is constant instead of being proportional to the long-term average. 

 

Please note the graph of the seasonally adjusted data doesn’t seem all that different from the non-

seasonally adjusted data.  However, I believe I did this correctly after reading through lots of 

guidance. 

 

.

Lake Lewisville Elevation

Seasonally Adjusted
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Model Specification & Fitting 

 

Determine if the series is stationary by viewing the correlogram using the sample autocorrelation 

function.  This function shows us how much interdependency there is between neighboring data 

points in the series.  For a stationary series, the autocorrelation function must approach 0 as the 

displacement gets large.  The sample autocorrelation function is an estimate of the 

autocorrelation function.  The sample autocorrelation function for our data set is shown below 

for lags 0 to 300. 

 
Correlogram of Lake Elevation
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As you can see from the above graph, the sample autocorrelation function for our data set does 

not approach 0 quickly, so we conclude this series is not stationary. 

 



We transform this series by taking first differences, and proceed by producing yet another 

correlogram of this new series as shown below for lags 0 to 100.  This correlogram shows that 

the autocorrelation function does approach 0 quickly and from here we conclude that this series 

is stationary.  In attempt to not over difference, we proceed with the first difference of lake 

elevation to model our time series. 

 

 

Correlogram of First Differences
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The strong correlation of daily lake elevation on Lake Lewisville suggests that an autoregressive 

model may be the best fit.  The next step was to fit autoregressive models of order 1, 2 & 3 and 

determine which model fit best.   

 

First, I began with an AR(1) regression model.  The AR(1) model forecasts that the current lake 

elevation is dependent on the immediately preceding day’s elevation.  Using the excel regression 

add-in, the following statistics were retrieved: 

 

Regression Statistics 

Multiple R     0.64073  

R Square     0.41054  

Adjusted R Square     0.41037  

Standard Error     0.19636  

F Statistic 2542 

Observations 3652 

 
  Coefficients Standard Error t Stat P-value 

Intercept    (0.00026)             0.00325    (0.07924)   0.93684  
X     0.64073              0.01271   50.41893             -    

 

These statistical results present a high enough R
2
 and P-value suggesting this model is a good fit.  

In addition, the t-value and F statistic is very high indicating there is a relationship between the 

daily lake levels on consecutive days. 

 

 



 

 

 

The AR(2) model forecasts that the current lake elevation is dependent on the previous two days’ 

elevation.   

 

Regression Statistics 

Multiple R          0.65776  

R Square          0.43265  

Adjusted R Square          0.43234  

Standard Error          0.19270  

F Statistic 1391 

Observations 3651 

 

  Coefficients Standard Error t Stat P-value 

Intercept       (0.000315)         0.003189      (0.098627)   0.921440  

X2       (0.193732)         0.016249    (11.922443)   0.000000  

X1        0.764852          0.016244     47.084120              -    

 

As the number of variables increase from 1 to 2, the F statistic drops, and the R
2
, P-value, 

Standard Error, and t-value on the past days’ temperature remain relatively the same. 

 

 

 

And similarly, the AR(3) model forecasts that the current lake elevation is dependent on the 

previous three days’ elevation. 

 

Regression Statistics 

Multiple R          0.65947  

R Square          0.43490  

Adjusted R Square          0.43444  

Standard Error          0.19236  

F Statistic 935 

Observations 3650 

 
  Coefficients Standard Error t Stat P-value 

Intercept       (0.000287)         0.003184      (0.090188)      0.928143  
X3        0.063137          0.016570       3.810381       0.000141  
X2       (0.241920)         0.020565    (11.763539)      0.000000  
X1        0.777036          0.016528     47.012689                 -    

 

Again, as the number of variables increase from 2 to 3, the F statistic drops, and the R
2
, P-value, 

Standard Error, and t-value on the past days’ temperature remain relatively the same. 

 

We have seen above that adding the additional variables (day 2 and day 3) to the regression does 

not materially improve the results.  Based on the principle of parsimony, we should choose the 

model that best fits with the least number of variables.   

 

 



To further investigate each of the above autoregressive models, I produced the below Durbin-

Watson statistics and compared them to the lower and upper critical values dL and dU.  Please 

note, I used the critical values for sample size 2000 because I could not find tables that include 

sample sizes largest than this.  I do not believe this will change the conclusion reached. 

 
Significance = 5%   Significance = 2.5%   Significance = 1%  

# 
variables dL dU  

# 
variables dL dU  

# 
variables dL dU 

1 1.92548 1.92747  1 1.9114 1.9134  1 1.89505 1.89704 
2 1.92447 1.92847  2 1.9104 1.9144  2 1.89405 1.89804 
3 1.92347 1.92947  3 1.9094 1.9154  3 1.89305 1.89905 

 

 
-statistical evidence that the error terms are positively autocorrelated 

-statistical evidence that the error terms are not positively autocorrelated 

-statistical evidence that the error terms are not positively autocorrelated 

 

 

I then produced the Box-Pierce Q statistic to test the null hypothesis that the data are 

independently distributed (i.e. the correlations in the population from which the sample is taken 

are 0, so that any observed correlations in the data result from randomness of the sampling 

process).  The Box-Pierce Q statistic calculated to be 1500 at lag 1 and increased as the lag 

increased and was well beyond the critical region.  Therefore, I further conclude that the AR(1) 

model is not white noise. 

 

Conclusion 

 

Based on the analysis until this point, the lake elevation for Lake Lewisville may best be forecast 

by applying an AR(1) model.  

 

Yt = β0 + β1 Yt-1 + e 

 

Therefore, based on the results the above, the  following AR(1) model is formed: 

 

Yt =  0.000026  + 0.64073 (Yt-1)  + e 

 

As expected the lake level for the current day is highly dependent on the elevation from the day 

before further demonstrating that lake levels are not random walks or white noise processes.  

 

Although the results of this project provided a model to fit to historical lake elevations, it may 

have been better to look at historical precipitation, average temperature and/or water usage in the 

DFW area to better predict lake levels. 

 

Analysis 

 

See Time Series Analysis.xls for the data used and the calculations/analysis completed 

 

 

 

Model DWS 

AR(1) 1.75173 

 AR(2) 1.97562 

AR(3) 2.00698 


