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Time Series Project

Introduction
For my time series project, I decided to study the population of New York City (NYC) over a 20-year period.  I originally intended to look at patterns in NYC crime; however, the crime statistics I found also included population information, and I thought that might be more interesting.  I was curious to see if the events of 2001 negatively impacted the population of NYC.

Data

The source of my data is the website for The Disaster Center (www.disastercenter.com/crime/nycrime.htm).  I analyzed the population of NYC from 1989 through 2008, reserving the data for 2009 and 2010 to test the accuracy of my model.
When first analyzing the data, I expected to see a population decrease in the years immediately following 2001, and then gradual increase as time moved further from that year.. As a result of the terrorist attacks that occurred during 2001, I expected that many people would have moved out of the city in 2002-2004.  The data did not bear this out. 

Following is a graph of the data analyzed in this project.
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The population remained relatively flat from 1993 through 1999, and then there was a significant increase in the population in 2000.  One factor in this large increase may be the number of people who wanted to have “Y2K” babies.  
Note that the graph above reflects the full population.  For all calculations I used 1/1000th of the population in order for my spreadsheets to be cleaner.

Model Specification
Since the population data is annual, there is no seasonality in the data.  Accordingly, we proceed by graphing the sample autocorrelation function.  This graph is shown below.
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The dampened sine wave shown in this correlogram implies that an AR(2) model may be appropriate for this time series.  We are generally looking for a correlogram that declines exponentially to 0 after very few lags in order to demonstrate stationarity.  However, the autocorrelation function for an AR(2) process with complex roots displays dampened sine wave behavior.
Before proceeding with an AR(2), I will examine the correlograms of the first and second differences to see if they would lead us to use a simpler model, such as an AR(1) model.

The autocorrelation function for first differences is graphed below:

[image: image3.emf]NYC Population Correlogram on First 

Differences

-0.4

-0.2

0.0

0.2

1 3 5 7 9 11 13 15 17 19

Lag

Autocorrelation


The correlogram for first differences does decrease to zero and then hover around zero.  However, this decrease doesn’t happen as quickly as we would expect, so we will look at the correlogram for second differences.  The graph of the sample autocorrelation function for second differences is below:

[image: image4.emf]NYC Population Correlogram on Second 

Differences

-0.6

-0.4

-0.2

0.0

0.2

0.4

1 3 5 7 9 11 13 15 17 19

Lag

Autocorrelation


The correlogram for second differences decreases to zero after two lags, and remains near zero other than for a few random fluctuations (lags 6 and 8).  This implies that the time series of second differences is a stationary AR(1) process.  
Model Fitting
Based on my analysis up to this point, I have two models that look like they could be good for modeling NYC population – an AR(2) model on the basic data, or an AR(1) model on second differences.  In order to select a model, I next used Excel’s regression tool to review various regression statistics.  

Model 1:  AR(2) model on basic data

Following is the key regression output for an AR(2) model on the basic data:

	Regression Statistics

	Multiple R
	0.9470

	R Square
	0.8969

	Adjusted R Square
	0.8831

	Standard Error
	192.9986

	Observations
	18


	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	728.1378
	1608.0207
	0.4528

	X Variable 1
	1.0068
	0.2604
	3.8665

	X Variable 2
	-0.0417
	0.2640
	-0.1578


AR(2) Equation:  Yt = 1.0068Yt-1 – 0.0417Yt-2 + 728.1378

The stationarity conditions for an AR(2) model are met for this model:
Φ1 + Φ2 < 1
(Φ1 + Φ2 = 0.965)

Φ2 – Φ1 < 1
(Φ2 – Φ1 = -1.048)

| Φ2 | < 1    ( | Φ2 | = .042)
Model 2:  AR(1) model on second differences
Following is the key regression output for an AR(1) model on second differences:

	Regression Statistics

	Multiple R
	0.0629

	R Square
	0.0040

	Adjusted R Square
	-0.0624

	Standard Error
	278.2050

	Observations
	17


	 
	Coefficients
	Standard Error
	t Stat

	Intercept
	3.3721
	67.4806
	0.0500

	X Variable 1
	0.0636
	0.2608
	0.2440


AR(1) Equation on second differences:  Yt = 0.0636Yt-1 + 3.3721

The stationarity condition for an AR(1) model is met for this model:

| Φ | < 1    ( | Φ | = 0.0636)
Comparison of Models
To compare the two potential models, I began looking at R2 for each model.  R2 = 1 would indicate that the regression line fits the data perfectly.  R2 for Model 1 is approximately 0.9, while R2 for Model 2 is nearly 0.  These statistics strongly support use of Model 1.

Next, I looked at the Durbin-Watson statistic for each model.   A Durbin-Watson statistic of 2 indicates no autocorrelation of the residuals.  The Durbin-Watson statistic for Model 1 is 1.98, while the statistic for Model 2 is 1.91.  They’re both fairly close to 2, but clearly Model 1’s Durbin Watson statistic is closer to 2.
Finally, I looked at the Box-Pierce Q statistic for each model.  We use this statistic to test the null hypothesis that the residuals represent white noise. The hypothesis is rejected if the Box-Pierce Q statistic is greater than the Chi-square value at a given significance level.  Based on a 10% significance level, following are the relevant items to evaluate the Box-Pierce Q statistic:
	
	Box-Pierce Q Statistic
	Chi-Square
	Degrees of Freedom

	Model 1
	1.873
	24.769
	17

	Model 2
	6.588
	23.542
	16


Since the Box-Pierce Q Statistic is less than the Chi-Square value for both models, we do not reject the null hypothesis.  So residuals may represent white noise.  
Based on the information analyzed, R2 strongly supports the use of Model 1, while the Durbin-Watson statistic and Box-Pierce Q statistic only moderately favor Model 1.  Since all statistics favor Model 1, I will use the AR(2) model based on the original data for forecasting.  
Forecasting

Based on the AR(2) model selected, I will test the model by forecasting the 2009 and 2010 populations in NYC.  The chart below compares the forecasted populations in 2009 and 2010 versus the actual populations.
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The estimated population for 2009 is quite close to the actual 2009 population, with the estimate only 18 too low (i.e., a difference of less than 0.1%).  The difference is larger in 2010, but the overestimate in 2010 is still only a 1.1% difference from the actual population.  These comparisons support the use of the AR(2) model for predicting NYC population annually.

While the large population increase in 2000 may have skewed our model, note that the population was relatively flat from 1993 to 2000.  It is unclear whether sudden jump in population in 2000 was attributable to people “making up for” the stagnant growth during the 1990’s, or if the data collection techniques used underreported population during the 1990’s and then finally reported an accurate population in 2000.  Also, the data shows that the NYC population decreased in 2010 by approximately 1%.  To further validate the model being used, data would need to continue to be monitored in order to assess whether 2010 is an aberration or the start of a trend of decreasing population.  If it is the start of a trend, the model used in this project may not continue to reasonably estimate future NYC population.
