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Project – Driving Test Passing Rate
Introduction

In this project we will study the passing rate data of driving test statistics in the UK.  It is interesting to see whether there are trends in this kind of data.
Data Used
The data used is a passing rate of male subjects for “car” driving tests in UK from April 2007 to Auguest 2011. The original data are in PDF formats, on the website below. They are collated together later in the attached Excel and file. We then import data into R using the text format.
http://www.dft.gov.uk/publications/dsa-practical-driving-test-statistics-car
There are in total (53 data points) which I believe is sufficient for analysis.
General Information
The data unit was originally a percentage, which is constrained to range from 0% to 100%. We used the Logit function to transform the data with the formula:

[image: image1.png]



Where p is the passing rate.

From now on we will use “data” to refer to the passing rate that has been transformed by the logit function. Let’s plot the data as time series.[image: image2.png]00 000 oo
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Stationarity

We can see that there is a definite trend of higher passing rate as time goes on. Here the autocorrelation plot.
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Now we take the first difference of our data points, to get figure 3. It seems like there is still barely prominent correlation at lag 1 and lag 10.
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Computing Augmented Dickey-Fuller Test, the result is as follow:

data:  diff(logit_ts, 1) 

Dickey-Fuller = -4.2475, Lag order = 10, p-value = 0.01

alternative hypothesis: stationary

So we could reasonable assume that the diff1 model is stationary.

Model Fitting

We use the EACF function in R to come up with the extended correlation matrix below:
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There’s no clear triangle shape so we need to try several models. Using the AIC method with logit-ed data, these are the results. (Note: In order to get a clearer picture and correct sign, we will multiply the logit data by 100 and add a constant of 20)
	Models
	σ2
	log likelihood
	AIC

	ARIMA(0,1,0)
	7.308
	-125.5
	250.99

	ARIMA(0,1,1)
	5.552
	-118.58
	239.17

	ARIMA(0,1,2)
	5.509
	-118.36
	240.71

	ARIMA(1,1,0)
	6.591
	-122.86
	247.73

	ARIMA(1,1,1)
	5.534
	-118.49
	240.98

	ARIMA(1,1,2)
	5.443
	-118.06
	242.11

	ARIMA(2,1,0)
	5.515
	-118.40
	240.80

	ARIMA(2,1,1)
	5.148
	-116.7
	239.4

	ARIMA(2,1,2)
	4.723
	-114.99
	237.97

	ARIMA(3,1,0)
	4.99
	-115.94
	237.88

	ARIMA(3,1,1)
	4.985
	-115.92
	239.83

	ARIMA(3,1,2)
	4.898
	-115.49
	240.98


So for AIC and Loglikelihood, the candidates could be either ARIMA(2,1,2) or ARIMA(3,1,0). However the correlations for those lags are not so significant in the correlogram.

And here are the BIC method results

For Logit data:
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For first difference:
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For second difference:
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For BIC [Logit Data], we see the existence of lag 11 and lag 12. This could be seasonality. For other BIC types, it seems to require more parameter than the BIC model from [Logit Data].

We will add seasonal moving average and see if it helps.

	Models
	σ2
	log likelihood
	AIC

	ARIMA(2,1,2)
	4.723
	-114.99
	237.97

	ARIMA(3,1,0)
	4.99
	-115.94
	237.88

	ARIMA(2,1,2) & S(0,1,1)
	4.841
	-106.87
	223.75

	ARIMA(3,1,0) & S(0,1,1)
	4.822
	-106.75
	221.51


So it looks like ARIMA(3,1,0) & S(0,1,1) is the best candidate. We will check for fitness below.

Model Diagnostics

We will check the standardized residual from the model ARIMA(3,1,0) & S(0,1,1). There isn’t any error particularly ususual.
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Most residuals are within 2 standard deviations.

Let’s see if the residuals are from normal distribution, using QQ plot. The result plot looks relatively linear except on the right side, showing a thin positive tail.
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Finally, we will plot the model results with the original logit data points. (Real data = black, Predicted = blue)
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Summary

We begin by transforming data using logit to get unconstrained unit. Then we test for stationarity of first difference. After that we begin enumerating on possible models and choosing the final model according to EACF correlation matrix, the AIC and the BIC. Finally, we plot the residuals to see whether it is normally distributed.  The above Real vs Predicted plot shows that the model is a good representation of our data.
Figure 1: passing rate (logit) by month 





Figure 2: data autocorrelation 





Figure 3: diff1 autocorrelation 








