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Direct Property and Casualty Insurer Employment
Introduction

The decision to work on employment numbers was influenced by its use in insurance modeling and recent media attention.  Employment has many applications in insurance modeling and one reason is that it is believed that changes in employment, among other factors, are indicators of how claims will trend in the future.  For several years now the media has placed more emphasis on job creation as indicators of how companies judge the economy and in some instances how well certain political initiatives are performing.  Finally I selected direct property casualty insurers (DPCI) employment because I was interested how this industry group has performed over time. 
Data
Below is a graph of employment numbers in thousands for DPCI which came from the http://www.bls.gov/data/ and ranges from January 1990 to September 2011.  The data and its documentation are located in the “Ins Emp” tab of my project workbook.
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Several things stuck out when looking at the graph.  First, the highest point of employment on the graph was in June 1999 and more recently June 2008 after which there has been a sharp decline.  Secondly there appears to be several points in time when underlying trend changes and I’ve noted those times on the graph.  Due to this I decided to use July 1998 to Dec 2005 for the time series.  Finally, the graph shows signs of seasonality.  It looks like the highest points of employment are in June or July and lowest in December, January and February.  This seems intuitive as many companies hire seasonal workers during the spring and summer months to take care of the company grounds.  This is more visually apparent early in the graph than later.  This may indicate changes in employment practices and/or how employment has been captured over time.
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Above are the seasonality indices and graphs of selected raw data and data after the seasonality adjustment has been applied.  The seasonality index confirms my thought that seasonality, although slight, does exist and so I will work with the adjusted data from this point on.  I’ve placed this work in the “Seasonal Adj” tab of the project workbook.
As mentioned earlier there appears to be underlying trend in the data and so we must adjust for this in order to obtain a stationary series.  The graphs below are of the first differences Wt = Yt – Yt-1 and of the sample autocorrelation function.
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The graph of first differences shows much less trend than the original graph.  The autocorrelation on the first differences appears to show random fluctuations and stays around zero.  In order to help decide whether the time series of first differences is white noise I’ll use Bartlett’s test.  In this case the confidence interval was [image: image6.png]= "‘) or (—0.209,0.209)




 for a test with 95% confidence.  Since there are no points outside this range this seems to support that this is a stationary process.  This test is in the “First Diff” tab of the project workbook.
Model Fitting
Given that the first differences is stationary I will fit an AR(1) and AR(2) model on those differences.  Using the Data Analysis Add-In within excel I solved for the parameters of the following equations using linear regression.
AR(1): [image: image8.png]Y, = 0.0528Y,_, — 0.1879




AR(2): [image: image10.png]Y, = 0.0240Y,_, + 0.1838Y,_, — 0.1898




(The data sets, testing and the resulting output can be found in the AR(p) tab of the project workbook.)
In order to evaluate whether serial correlation exists I calculated the Durbin-Watson (DW) statistic.  The DW statistic was 2.009 and 2.069 for AR(1) and AR(2) respectively.  Since both are very close to 2.0 we accept the null hypothesis of no serial correlation.  
To determine whether the residuals resemble a white noise process we review the Box and Peirce Q Statistic (BP Stat).  The AR(1) model with 87 (88-1) degrees of freedom return a BP Stat of 44.  The appropriate comparison for 95% confidence is between 83 (60 d.o.f) and 152 (120 d.o.f) and so we accept the model as white noise.  The AR(2) model had similar results with a BP Stat of 43.5.
One thing we should consider is how well the model explains the variation in our first differenced series.  We may gain some insight by looking at the R2 or in Excel’s case the Multiple R.  Ideally we would like to see values that are at least in the mid 80’s. 
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	Regression Statistics
	
	Regression Statistics
	

	Multiple R
	0.05295506
	
	Multiple R
	0.192058831
	

	R Square
	0.002804238
	
	R Square
	0.036886595
	

	Adjusted R Square
	-0.008791061
	
	Adjusted R Square
	0.013955323
	

	Standard Error
	1.35671999
	
	Standard Error
	1.314704106
	

	Observations
	88
	
	Observations
	87
	

	
	
	
	
	
	


In this case neither model appears to be performing very well.  It is important to note that the R2 value for AR(2) is significantly higher than AR(1) which may indicate that by increasing the order of the model we may get a better fit.  
After considering the increase in R2 value moving to a AR(2) from AR(1) I took a look at a AR(3) to see if this model improved the fit.  Based on the results of the R2 below it appears that the model has improved however I’m unsure about the level of significance given that it is still some ways away from where we would like to see it. 
	Box and Pierce
	43.00
	
	
	

	Durbin-Watson
	1.988418551
	
	
	

	
	
	
	
	

	 
	Coefficients
	
	Regression Statistics
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	-0.16149121
	
	Multiple R
	0.268214201

	
	-0.01080438
	
	R Square
	0.071938858

	
	0.175952497
	
	Adjusted R Square
	0.037985401

	 
	0.186272737
	
	Standard Error
	1.306019446

	
	
	
	Observations
	86


Conclusion
This data seems to be easily converted to a stationary process and shows promise that a model could be fit to the data.  However, based on the R2’s which point to a poor fit of the lower order autoregressive models I selected.  It may worth looking at higher order autoregressive models, moving average models or a mixed autoregressive – moving average model.   
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