Time Series VEE Course, NEAS, winter 2011

Student Project

Prepared by: xxxxxx xxxxxxx
Candidate ID: xxxxxxxx

Time Series VEE Course, NEAS, winter 2011

Student Project

Prepared by: xxxxxx xxxxxxx
Candidate ID: xxxxxxxx
Wheat Prices

Introduction:
Over the past years, the variations in wheat prices and particularly the overall rise has been a source of great discomfort. People have to adjust for the higher wheat prices, and also have the greater uncertainty about what the wheat prices might be in the future. Being able to predict future wheat prices through regression analysis and time series modeling would not only assist in lessening the stress caused due to unknown future wheat prices, but also help better understand the trends that wheat prices exhibit. This project takes into account historical wheat prices to build an ARIMA model that can be used to project future wheat prices.
Data:
The data used for carrying out this project was taken from the website 
http://www.indexmundi.com/commodities/?commodity=wheat&months=360
This source contained monthly data for the last thirty years (i.e. from November 1981 to October 2011). In order to develop time series model, the ten-year period data was selected starting from January 1995 to December 2005. The data from January 2006 to October 2011 was then used to test the accuracy of the model.
The following graph shows the monthly data used to develop my model:
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The graph as shown above does not show any signs of seasonal trend in the data and hence does not require any seasonal adjustment. 

Stationarity Test:

Before developing the model, the data is required to be examined whether it is stationary or not. One of the ways considered for a data to be a stationary process is if its statistical parameters, such as mean and standard deviation, do not vary over time. Another parameter that must not vary with time is the autocorrelation. In order to check the data, the autocorrelation function will be taken into account and examined for its dependence on time.
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The above graph shows that the series is not stationary as the autocorrelation function shows a strong linear relationship for the first 25 lags, after which it drops below zero and then fluctuates below zero before moving back up towards zero. The autocorrelation function for our process thus, demonstrates a dependence on time, signifying that it is not a stationary process.
First Difference:
Since the original data is not stationary, the first difference of the data was analyzed. A plot of the first difference is shown below:
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The plot of first difference displays fewer trends than the original series. The following chart displays the correlogram of the first differences to further examine the data for Stationarity:
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The autocorrelation function of the first difference does not point out any dependence on time. It demonstrates random fluctuations of both positive and negative values, centered towards zero thus, indicating a stationary process. However, additional testing will be done to confirm this observation by performing Bartlett’s test.

Bartlett’s test:

if a series of length T is generated by a white noise process, the estimates of the (partial) autocorrelation coefficients are approximately normally distributed random variables with zero mean and variance 1/T. The confidence limits are then equal to ± z1-α/2 /
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, with α being the desired significance level and z the percent point function of the standard normal distribution.

Hence, according to this test if a process is white noise, approximately only five percent of the autocorrelation data points will lie outside at the 95% confidence interval centered on zero. The approximate standard deviation of the process is the reciprocal of the square root of the number of terms. In our process we have the following parameters:

σ = 1/
[image: image6.wmf]T

 = 1/
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 = 0.087039
95% Confidence Interval = ±1.96*σ = ±1.96*0.087039=± 0.170596
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By adding the confidence interval to our correlogram of first difference, it can be seen that only 1 out of the 132 observations fall outside of the interval. This is equivalent to 0.8% and thus implies that the first difference is stationary.

Model Parameterization:
After arriving at a stationary data, we will fit our data using an autoregressive model (AR (p)), using p = 1, 2 and 3.  Since we are using the first difference, this is equivalent to ARIMA (p, 1, 0) models.

By Using Excel’s regression data analysis add-in, the following is a summary of the regression results along with the resulting AR equations:
AR (1): Yt = 0.2595Yt-1 + 0.0698 + εt
	Regression Statistics

	Multiple R
	0.26028

	R Square
	0.067746

	Adjusted R Square
	0.060519

	Standard Error
	8.717753

	Observations
	131


	
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.0698
	0.7617
	0.0916

	X Variable 1
	0.2595
	0.0848
	3.0617


AR (2): Yt =0.28Yt-1 - 0.0769Yt-2 +0.0684+ εt
	Regression Statistics

	Multiple R
	0.270112

	R Square
	0.07296

	Adjusted R Square
	0.058361

	Standard Error
	8.760081

	Observations
	130


	
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.0684
	0.7683
	0.0890


	X Variable 1
	0.2800
	0.0886
	3.1613

	X Variable 2
	(0.0769)
	0.0885
	(0.8689)


AR (3): Yt =0.2798Yt-1 - 0.0790Yt-2 -0.0048Yt-3 + 0.1013 + εt

	Regression Statistics

	Multiple R
	0.270594

	R Square
	0.073221

	Adjusted R Square
	0.050979

	Standard Error
	8.8215

	Observations
	129


	
	Coefficients
	Standard Error
	t Stat

	Intercept
	0.1013
	0.7768
	0.1304

	X Variable 1
	0.2798
	0.0895
	3.1260

	X Variable 2
	(0.0790)
	0.0931
	(0.8477)

	X Variable 3
	(0.0048)
	0.0899
	(0.0539)


The following table presents a summary of the results from the auto regression: 
	
	Sum of Coefficients
	R-Square
	Adjusted R-Square
	Durbin-Watson Statistic
	Box - Pierce Q Statistic
	Chi - Squared 10%

	AR(1)
	0.2595
	0.0677
	0.0605
	1.9570
	58.6411
	147.8048

	AR(2)
	0.2031
	0.0730
	0.0584
	1.9952
	59.4672
	146.7241

	AR(3)
	0.1960
	0.0732
	0.0510
	1.9982
	59.0734
	145.6430


From the above table, it can be seen that the sum of coefficients for each is less than 1, suggesting the models are stationary.  The Durbin-Watson statistic is around 2 for each, suggesting no serial correlation.  Besides, the Box-Pierce Q statistics are lower than Chi-Squared critical value. We therefore, cannot reject the null hypothesis that the residuals are formed by a white noise process.  
Model Selection and Forecasting:
In order to decide the best fit out of the three autoregressive models for the data, we will first look at the Adjusted R-Square statistic which provides a general indication of how well each model formula fits the data. From the table provided above, it can be seen that though there is not much significant difference between the three models, the Adjusted-R square value is highest for the AR (1) model.
The next statistic to be observed is the Durbin-Watson Statistic. The provided table shows that all the three models are showing the Durbin-Watson Statistics pretty closer to 2. Out of these, the highest value is shown by the AR (3) model while AR (2) model is also very close with a negligible difference.

On the basis of all of the above statistics that I have taken into consideration, I have come up to the conclusion that AR (2) process (Yt =0.28Yt-1 - 0.0769Yt-2 +0.0684+ εt) is an appropriate fit for the data as it has a higher Durbin-Watson statistic with a negligible difference from the highest value of the AR (3) model and also a higher Adjusted R-Square value with an insignificant difference from the highest value of the AR (1) model. 
Lastly, I will now test the accuracy of the model by comparing it to the actual data taken from January 2006 to October 2011.
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Conclusion:
Although the forecasted values are little higher for most of the time as compared to actual for the AR (2) model which I have decided to use, I feel the model does a decent job of fitting to the actual time series. Also, the shapes of the two series are pretty similar.  There are many other factors that could be involved in the prices of wheat such as global economic conditions as well as the agricultural and climatic conditions.  In my opinion, a more accurate model may be produced using other regressors, but given knowing just the prior price of wheat, I believe that this model fits the data reasonably well.
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