INTRODUCTION
Law Enforcement Liability is an insurance product that covers liability arising out of the operations and duties of a law enforcement department.  There are many variables that impact the exposures faced by a typical law enforcement department.  One of which is the crime rate.  If there are a higher number of crimes per citizen in a particular area, there could be more confrontations with police officers and more exposure to liability.
This project will attempt to build a model to aid in projecting future crime rates for an individual area.  Specifically, this analysis will use annual property crime rates in Minnesota from 1960 – 2004 to develop a time series model.  Then we will use the model to forecast property crime rates for 2005 through 2009.

Property crime rates are based on the number of reported property crimes per one-hundred thousand of population.  Property crimes, for the purpose of this data, include burglary, larceny, theft, and motor-vehicle theft.  The data used in this analysis came from the Uniform Crime Reporting Data Tool (http://www.ucrdatatool.gov/) through the Federal Bureau of Investigation.
MODEL SPECIFICATION
First we will specify the appropriate ARIMA model for our series.  Below is a plot of annual property crime rates for the past 50 years.
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We must determine whether we have a stationary series prior to building any ARIMA model.  This can be done by either looking directly at the data and identifying any noticeable trends or looking at the autocorrelation function of the series.
By looking at the actual data above, it is difficult to conclusively say whether either series is stationary.  Thus we will now look at the sample autocorrelation function for the series.
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We can confidently say the series is stationary if we see the sample autocorrelations dampen to zero as our lag increases.  Although this series does appear to reduce to zero here, it does not actually reach zero until after lag 11 so it appears our series is not stationary.
Since we can not conclude that our data is not stationary, we will analyze the first differences.  Below is a depiction of the first differences over time as well as the autocorrelations for these differences. 
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[image: image4.emf]Autocorrelation Function (Diff)
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Now the autocorrelation function quickly reduces to zero and oscillates around zero after that.  We will conclude that this series is stationary.  If we were still uncertain, we could take second differences and produce a similar correlogram.  However here we will proceed with our analysis based on the first differences.
MODEL ESTIMATION

With no moving average terms, we can use simple linear regression to derive the model parameters.  We will hold out the last five observations (2005 – 2009) in order to validate the accuracy of our model.
The crime rates were regressed using AR(1), AR(2), and AR(3) models.  The equations and relevant summary statistics are summarized below for each model.

AR(1):
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[image: image6.emf]Regression Statistics

Multiple R 0.971247

R Square 0.94332

Adjusted R Square 0.941971

Standard Error 204.905

Observations 44


The adjusted R2 of .942 indicates a strong relationship between yt and yt-1.




AR(2):


[image: image7.wmf]2

1

3405

.

0

25138

.

1

5703

.

335

-

-

-

+

=

t

t

t

y

y

y



[image: image8.emf]Regression Statistics

Multiple R 0.971994

R Square 0.944772

Adjusted R Square 0.942011

Standard Error 192.0877

Observations 43


The additional parameter has a relatively low p-value however there seems to be very little impact on the adjusted R2 value.
AR(3):
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[image: image10.emf]Regression Statistics

Multiple R 0.968648

R Square 0.938279

Adjusted R Square 0.933406

Standard Error 191.22

Observations 42


Here the adjusted R2 value actually decreases with the additional parameter.

Finally, we test that the parameters yield a stationary series.  For all three models, the sum of the parameters < 1; this is the desired result.

Based on the initial results above, I would chose the AR(1) model since there appears to be very little value added by the additional parameters.  However, we will look at some model diagnostics before actually selecting a model.
MODEL DIAGNOSTICS

Below we will look at the Durbin Watson statistic and Box Pierce Q statistic.
Durbin-Watson Statistic

A Durbin-Watson statistic of 2 indicates no serial correlation is present.  The low value for AR(1) here shows the potential existence of positive serial correlation.  The other two models show no serial correlation among the residuals.
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Box Pierce Q Statistic
The Box Pierce Q statistic is used to test whether the residuals are white noise.  Below we look at the Q Statistic at lag 30 and the corresponding Chi-Square critical value (K-p-q d.f.).
	Model
	Box Pierce Q Statistic
	Chi-Square Critical Value

	AR(1)
	38.46428
	37.91592

	AR(2)
	28.66478
	36.74122

	AR(3)
	17.80978
	35.56317



For the AR(1) model, Q > Chi-Square critical value.  Thus we reject the null hypothesis that the residuals are a white noise process.  For the other two models, we fail to reject the null hypothesis.

As noted earlier, the additional parameters did not significantly impact the R2 value.  However, based on the results of the Durbin Watson statistic and Box Pierce Q statistic, I would choose AR(2) or AR(3) over the AR(1) model.  Since the AR(2) model has one less parameter than the AR(3) model, I will select this simpler model.

MODEL EVLAUATION
Despite selecting the AR(2) model, I will produce an ex post forecast for all three models discussed above.  We will forecast the Minnesota property crime rates for 2005 through 2009.  We will then compare the results to the actual crime rates.
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While none of the models seem to do a great job predicting the property crime rates, the AR(2) model does appear to do a slightly better job than the other two.  Each of the models appear to capture the general shape of the curve however they all fail to capture the magnitude of the drop in crime rates from 2005 to 2009.

CONCLUSION
Although our model is not perfect it does provide some value in projecting property crime rates.  The crime rate for a particular state is likely dependent on many variables not contained in our model.  Also, we only looked at a subset of crimes for one state.  More credible data may result in a better forecast.
Being able to more accurately predict crime rates would be beneficial in many areas including insurance.  To get a better projection, we may need to create a model that incorporates other variables such as economic conditions and policy policies and procedures.
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