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Fall 2011 Semester

STUDENT PROJECT WRITE-UP

ARIMA Modelling of Monthly Retail Prices of “Carabao” Mangos Grown and Sold in the Philippines

Introduction

The purpose of the project was to analyze data on monthly retail prices of “Carabao” mangos grown and sold in the Philippines from 2000 to 2011 and to determine an ARIMA model that best fitted the data for forecasting. Data was gathered from the Bureau of Agricultural Statistics of the Philippines website (http://www.bas.gov.ph). The data for the project was found under the heading “Fruits: Retail Prices by Region and by Province”, which was retrieved from the following URL: 

http://countrystat.bas.gov.ph/index.asp?cont=selection&pageid=pxweb/dialog/varval.asp&ma=M70PRRPC&path=pxweb/database/main/MEGA/&lang=1. 
The URL redirected the student to a query page where several parameters were chosen to retrieve the desired data. The data was retrieved by selecting the following parameters and executing the query:

· Geolocation: Philippines

· Commodity: Mango Carabao, ripe

· Year(s): 2000 – 2011.

· Month(s): January – December.

R was used to perform the statistical analysis of the project, hence, the data was stored in a CSV file in order for R to read the data. The data of the original time series was stored in the R workspace under the variable name “mangoTS”.
Model Specifications
The data were first plotted in R (Exhibit 1) to determine the appropriate ARIMA model. It was primarily observed that there was a seasonality component in the data. The observation was found to be reasonable since the climate of the Philippines is characterized as having a dry season, normally from November to April, and a wet season, normally from May to October. It is generally difficult to grow mangos during wet seasons, since rainfall is capable of ruining the flower blossoms of mango trees, therefore lessening the amount of fruit produced. The converse is true, that is, it is generally easier to grow mangos during the dry season, since there is less potential rainfall. The supply of mangos therefore is lower in the months after the wet season, leading to higher prices to be recorded in these months, and the supply of mangos is higher in months after the dry season, leading to lower prices to be recorded in these months.
It was also observed from the plot that the data trends upward as the number of lags increases. This observation was found to be reasonable since the prices of commodities were affected by inflation.

	Exhibit 1: Monthly Retail Price of Mango Carabao in the Philippines (in PHP)
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	> mangoTS <- ts(read.csv(“mangoTS2.csv”), start=c(2000,1), frequency=12)

> plot(mangoTS, xlab="Year", ylab="Retail Price (PHP) per Kilogram", col=4)

> Months=c('J','F','M','A','M','J','J','A','S','O','N','D')

> points(window(mangoTS,start=c(2000,1)),pch=Month)


The presence of an upward trend and a seasonal component in the data led to the conclusion that the data was non-stationary. The sample autocorrelation function of the data was plotted using R to verify the non-stationarity of the time series (Exhibit 2).
	Exhibit 2: Sample ACF of Monthly Retail Prices of Mango Carabao in the Philippines 
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	> acf(mangoTS, ci.type=’ma’, lag.max=25, main=””)


The seasonal autocorrelation relationships are prominent in the sample ACF. 

The proper non-stationary model was determined by first taking the first difference of the time series to eliminate the upward trend. The first differences of time series were plotted in R (Exhibit 3). 

	Exhibit 3: Time Series Plot of the First Differences of Monthly Retail Prices of Mangos
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	> plot(diff(mangoTS), xlab="Year", ylab="First Differences", col=4)


It was observed from the plot that the upward trend of the original time series disappeared, however, the seasonality was observed to be present in the series. The sample autocorrelation function of the first differences was plotted to verify the presence of seasonality in the series (Exhibit 4).

	Exhibit 4: Sample ACF of First Differences of Monthly Retail Prices of Mangos 

	[image: image4.emf]0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

Lag

ACF



	> acf(diff(mangoTS), ci.type=’ma’, lag.max=25, main=””)


In addition to the first differences, the monthly (s=12) seasonal differences were taken in an attempt to eliminate the seasonality component of the model. The first and seasonal differences of the time series were plotted in R (Exhibit 5). 

	Exhibit 5: Time Series Plot of the First and Seasonal Differences of Prices
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	> plot(diff(diff(mangoTS),lag=12), xlab="Year", 

    ylab="First and Seasonal Differences", col=4)


The resulting plot was inspected and it was observed that both the upward trend and seasonal component of the original time series disappeared. The sample ACF of the first and seasonal differences was plotted in R for verification.

	Exhibit 6: Sample ACF of First and Seasonal Differences of Prices
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	> acf(diff(diff(mangoTS),lag=12), ci.type=’ma’, lag.max=25, main=””)


It was determined from both the time series plot of and sample ACF of the first and seasonal differences that an [image: image8.png]ARIMA(p,1,q) x (P,1,Q),2



was a good candidate to model the time series.
Model Fitting

Data for years 2009-2011 were omitted during the fitting process in order to test the chosen model’s forecasting ability. An R script was used to fit the time series to several [image: image10.png]ARIMA(p,1,q) x (P,1,Q),2



 models. The R script was designed to store the Akaike Information Criterion/An Information Criterion (AIC) statistic of each [image: image12.png]ARIMA(p,1,q) x (P,1,Q),2



 tested in order to evaluate goodness -of-fit. The R script followed the following algorithm:
· Step 1: Set [image: image14.png]


 and [image: image16.png]


 to start with an [image: image18.png]ARIMA(p,1,q) x (1,1,0)4,



 model. Define the limiting values for [image: image20.png]


 and [image: image22.png]


; for the project, limiting values were set to 5 for both [image: image24.png]


 and [image: image26.png]


. 

· Step 2: Cycle through various combinations of [image: image28.png]


 and [image: image30.png]


, starting with [image: image32.png]


 and [image: image34.png]


. Store the AIC of each model in a matrix. Increment [image: image36.png]


 and [image: image38.png]


 until all combinations are exhausted.
· Step 3: Repeat process, but with [image: image40.png]


 and [image: image42.png]


 for [image: image44.png]ARIMA(p,1,q) x (0,1,1)4,



 models and [image: image46.png]


 and [image: image48.png]


 for [image: image50.png]ARIMA(p,1,q) x (1,1,1)4,



 models.
The results of the R script were displayed for model evaluation (Exhibit 7).
	Exhibit 7: AIC of Several ARIMA(p,1,q)x(P,1,Q)12 Models
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AIC is a statistic which measures the goodness-of-fit by rewarding models for having greather likelihood and penalizing models for each parameter estimated. Hence, the resulting AICs were used to determine which model had the best goodness-of-fit. This was determined by choosing the model which had the lowest AIC. Based on the AIC matrices, [image: image53.png]ARIMA(0,1,3) x (0,1,1),-



, [image: image55.png]ARIMA(2,1,1) x (0,1,1),-



 and [image: image57.png]ARIMA(0,1,3) x (1,1,1),,



 had the three lowest AICs among the models, with the [image: image59.png]ARIMA(0,1,3) x (0,1,1),-



 having the lowest AIC. 
The coefficients of the models were found using R (Exhibit 9).
	Exhibit 9: Time Series Model Candidates
ARIMA(0,1,3)x(0,1,1)12
 

θ1
θ2
θ3
Θ

Coefficients

0.0148

-0.3561

-0.2506

-1.0000

Standard Error

0.0991

0.1012

0.0978

0.1508

σ2 = 7.205

 

 

 

 



	ARIMA(2,1,1)x(0,1,1)12
 

φ1
φ2
θ1
Θ

Coefficients

0.7633

-0.3498

-0.7423

-1.0000

Standard Error

0.1683

0.1069

0.1663

0.1527

σ2 = 7.219

 

 

 

 

ARIMA(0,1,3)x(1,1,1)12
 

θ1
θ2
θ3
Φ

Θ

Coefficients

0.0245

-0.3402

-0.2644

-0.1494

-1.0000

Standard Error

0.0994

0.0985

0.0985

0.1153

0.2201

σ2 = 6.84

 

 

 

 

 



	> mangoTS.truncated <- ts(read.csv(“mangoTS2_no2008.csv”), start=c(2000,1),   

     frequency = 12)

> arima.013.011 < -arima(mangoTS.truncated,order=c(0,1,3),

   seasonal=list(order=c(0,1,1),period=12))

> arima.211.011 < -arima(mangoTS.truncated,order=c(2,1,1),

   seasonal=list(order=c(0,1,1),period=12))

> arima.013.111 < -arima(mangoTS.truncated,order=c(0,1,3),

   seasonal=list(order=c(1,1,1),period=12))
> arima.013.011; arima.211.011; arima.013.111


The [image: image61.png]ARIMA(0,1,3) x (1,1,1),,



 was excluded as a model candidate despite the low σ2 to adhere to the principle of parsimony, that is, the ideal model does not consist of too many parameters. Since the [image: image63.png]ARIMA(0,1,3) x (0,1,1),-



 and [image: image65.png]ARIMA(2,1,1) x (0,1,1),-



 had the same number of parameters, they were considered as model candidates.
Model Diagnostics

Additional diagnostic tests aside from the AIC statistic were run to determine which among the two models was more appropriate to model the time series. 

 The standardized residuals of the models were plotted on histograms to determine the normality of the standardized residuals (Exhibit 10)
	Exhibit 10: Histograms of Standardized Residuals of Time Series Model Candidates
             ARIMA(0,1,3)x(0,1,1)12                          ARIMA(2,1,1)x(0,1,1)12
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	> hist(rstandard(arima.013.011)); hist(rstandard(arima.211.011))


Histograms of both models appeared to be “bell-shaped”, which is a characteristic of the normal distribution, but neither histogram were ideally shaped as such. Further investigation of both models’ standardized residuals was performed by inspecting their respective QQ Normal Plots (Exhibit 11).

	Exhibit 11: QQ-Normal Plots of Standardized Residuals of Model Candidates
             ARIMA(0,1,3)x(0,1,1)12                          ARIMA(2,1,1)x(0,1,1)12
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	> qqnorm(rstandard(arima.013.011)); qqline(rstandard(arima.013.011))
> qqnorm(rstandard(arima.013.011)); qqline(rstandard(arima.013.011))


Upon inspection of both QQ-normal plots, it was determined that the standardized residuals are not normally distributed, however, the standardized residuals of both models are not far from normality.
A diagnostics display was performed on the residuals of both models (Exhibits 12 and 13) . The diagnostics display includes three diagnostic tools in one display, namely, the sequence plot of the standardized residuals, the sample ACF of the residuals, and the p-values of the Ljung-Box statistic, which is used to test the correlation between residuals.
	Exhibit 12: Diagnostics Display of the ARIMA(0,1,3)x(0,1,1)12 Model
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	> tsdiag(arima.013.011)


For the [image: image72.png]ARIMA(0,1,3) x (0,1,1),-



, sequence plot of the standardized residuals suggested that residuals were not far from normality. The ACF of the residuals suggested that there was no correlation between residuals, although there is a residual that lies beyond our confidence interval. Finally, the p-values of the Ljung-Box test were observed to be significant, which further indicated that there was no correlation between the residuals.

	Exhibit 13: Diagnostics Display of the ARIMA(2,1,1)x(0,1,1)12 Model
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	> tsdiag(arima.211.011)


For the [image: image75.png]ARIMA(2,1,1) x (0,1,1),-



, sequence plot of the standardized residuals suggested that residuals were not far from normality, although there were more values approaching ±3 than the [image: image77.png]ARIMA(0,1,3) x (0,1,1),-



 model. The ACF of the residuals indicated that all residuals were within the confidence level and suggested that there was no correlation between the residuals. Finally, the p-values of the Ljung-Box test were observed to be higher than the [image: image79.png]ARIMA(0,1,3) x (0,1,1),-



, which further indicated that there was no correlation between the residuals.

Although both models satisfy the diagnostic tests, the [image: image81.png]ARIMA(0,1,3) x (0,1,1),-



 model was chosen since it had the lower AIC between the two.

Forecasting

The [image: image83.png]ARIMA(0,1,3) x (0,1,1),-



 was used to forecast the monthly retail price of “Carabao” mangos in the Philippines from October 2008 up to October 2011. These were then plotted against actual data during those periods to test the forecasting power of the model (Exhibit 14).

	Exhibit 14: Forecasts of the ARIMA(0,1,3)x(0,1,1)12 Model
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	> plot(arima.013.011, n.ahead=36, type='b', col=2, xlab = "Year", 

    ylab="Monthly Retail Price (in PHP) per Kilogram", main="")

> lines(mangoTS, col=4)


In the forecast plot, the points beyond year 2008 corresponded to the forecasted values based on the [image: image86.png]ARIMA(0,1,3) x (0,1,1),-



 model. The red lines of the plot corresponded to the 95% upper and lower prediction limits. The blue line of the plot corresponded to the actual data from October 2008 up to October 2011. Since none of actual values crossed prediction limits, it was determined that [image: image88.png]ARIMA(0,1,3) x (0,1,1),-



 model was a good forecasting model.
Conclusion

It was determined that the monthly retail price of “Carabao” mangos in the Philippines can be modeled with a seasonal [image: image90.png]ARIMA(0,1,3) x (0,1,1),-



 model with the following coefficients:

	ARIMA(0,1,3)x(0,1,1)12

	 
	θ1
	θ2
	θ3
	Θ

	Coefficients
	0.0148
	-0.3561
	-0.2506
	-1.0000

	Standard Error
	0.0991
	0.1012
	0.0978
	0.1508

	σ2 = 7.205
	 
	 
	 
	 


The model satisfied several diagnostic tests and had strong forecasting ability based on a plot of forecasted values versus actual values.

Appendix

A. Datasets used in R
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[image: image92.emf]mango2TS_no2008.c sv


B. R Script used for Seasonal ARIMA Model determination using AIC as criterion


[image: image93.emf]ARIMA Seasonal  Script.zip
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_1386487676/ARIMA Seasonal Script.zip


ARIMA Seasonal Script.R

# Load TSA Package

library(TSA)



# Create Time Series Variables

mangoTS <- ts(read.csv("mango2TS.csv"),start=c(2000,1),frequency=12)

mangoTS.truncated <- ts(read.csv("mango3TS_no2011.csv"),start=c(2000,1),frequency=12)



#For Seasonal ARIMA(p,1,q)x(1,1,0) Model



matrix110=mat.or.vec(4,4)

for(i in 0:3){for(j in 0:3){

mtx110[i+1,j+1]=arima(mangoTS.truncated[,1],order=c(i,1,j),seasonal=list(order=c(1,1,0),period=12))$aic}}

mtx



#For Seasonal ARIMA(p,1,q)x(0,1,1) Model

matrix011=mat.or.vec(4,4)

for(i in 0:3){for(j in 0:3){

matrix011[i+1,j+1]=arima(mangoTS.truncated[,1],order=c(i,1,j),seasonal=list(order=c(0,1,1),period=12))$aic}}

matrix011



#For Seasonal ARIMA(p,1,q)x(1,1,1) Model



matrix111=mat.or.vec(4,4)

for(i in 0:3){for(j in 0:3){

matrix111[i+1,j+1]=arima(mangoTS.truncated[,1],order=c(i,1,j),seasonal=list(order=c(1,1,1),period=12))$aic}}

matrix111
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